mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-26 06:48:04 +02:00
Änderungen der Zugfahrt eingearbeitet.
This commit is contained in:
parent
44b274b3a6
commit
102fe0447b
10 changed files with 129 additions and 79 deletions
|
@ -5,7 +5,8 @@
|
|||
$f(x) := m \cdot x + t$ with $m \in \mdr \setminus \Set{0}$ and
|
||||
$t \in \mdr$ be a linear function.
|
||||
|
||||
Then the points $(x, f(x))$ with minimal distance are given by:
|
||||
Then there is only one point $(x, f(x))$ on the graph of $f$ with
|
||||
minimal distance to $P = (x_P, y_P)$. This point is given by
|
||||
\[x = \frac{m}{m^2+1} \left ( y_P + \frac{1}{m} \cdot x_P - t \right )\]
|
||||
\end{theorem}
|
||||
|
||||
|
@ -35,6 +36,8 @@
|
|||
\addplot[domain=-5:5, thick,samples=50, red] {0.5*x};
|
||||
\addplot[domain=-5:5, thick,samples=50, blue, dashed] {-2*x+6};
|
||||
\addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)};
|
||||
\newcommand{\R}{0.9}
|
||||
\addplot [domain=0:2*pi,samples=50, dotted]({\R*cos(deg(x))+2},{\R*sin(deg(x))+2});
|
||||
\addplot[blue, nodes near coords=$f_\bot$,every node near coord/.style={anchor=225}] coordinates {(1.5, 3)};
|
||||
\addplot[red, nodes near coords=$f$,every node near coord/.style={anchor=225}] coordinates {(0.9, 0.5)};
|
||||
\addlegendentry{$f(x)=\frac{1}{2}x$}
|
||||
|
@ -57,7 +60,7 @@
|
|||
&= \frac{m}{m^2+1} \left ( y_P + \frac{1}{m} \cdot x_P - t \right )\label{eq:solution-linear-r}
|
||||
\end{align}
|
||||
It is obvious that a minium has to exist, the $x$ from Equation~\ref{eq:solution-linear-r}
|
||||
has to be this minimum.
|
||||
has to be this minimum. $\qed$
|
||||
\end{proof}
|
||||
\clearpage
|
||||
|
||||
|
@ -113,4 +116,39 @@ The point with minimum distance can be found by:
|
|||
\Set{b} &\text{if } S_1(f, P) \ni x > b
|
||||
\end{cases}\]
|
||||
|
||||
\todo[inline]{argument? proof?}
|
||||
If $S_1(f, P) \cap [a,b] \neq \emptyset$, then $\underset{x\in[a,b]}{\arg \min d_{P,f}(x)} = S_1(f,P) \cap [a,b]$,
|
||||
because $S_1(f,P)$ gives all global minima of $f$. Those are also
|
||||
minima for the intervall $[a,b]$. There are not more minima, because
|
||||
$S_1$ gives all minima of $P$ to $f$.
|
||||
|
||||
If $S_1(f, P) \cap [a,b] = \emptyset$, then it is not that simple.
|
||||
But we can calculate the distance function:
|
||||
|
||||
\begin{align}
|
||||
d_{P,f}(x) &= \sqrt{(x-x_P)^2 + (f(x) - y_P)^2}\\
|
||||
&= \sqrt{(x^2 - 2x x_P + x_P^2) + (mx + (t-y_P))^2}\\
|
||||
&= \sqrt{(x^2 - 2x x_P + x_P^2) + m^2 x^2 + 2mx(t-y_P) + (t-y_P)^2}\\
|
||||
&= \sqrt{x^2(1+m^2) + x(-2 x_P + 2m(t-y_P)) + (x_P^2 + (t-y_P)^2)}
|
||||
\end{align}
|
||||
|
||||
This function (defined on $\mdr$) is symmetry to the axis
|
||||
\begin{align}
|
||||
x_S &= - \frac{-2 x_P + 2m(t-y_P)}{2(1+m^2)}\\
|
||||
&= \frac{x_P - m(t-y_P)}{1+m^2}\\
|
||||
&= \frac{m}{m^2+1} (y_P + \frac{1}{m} x_P - t)
|
||||
\end{align}
|
||||
|
||||
$f$ is on $(-\infty, x_S]$ strictly monotonically decreasing and
|
||||
on $[x_S, + \infty)$ strictly monotonically increasing.
|
||||
|
||||
Thus we can conclude:
|
||||
\[\forall x,y \in \mdr: x \leq y < x_S \Rightarrow d_{P,f}(x_S) < d_{P,f}(y) \leq d_{P,f}(x)\]
|
||||
\[\forall x,y \in \mdr: x_S < y \leq x \Rightarrow d_{P,f}(x_S) < d_{P,f}(y) \leq d_{P,f}(x)\]
|
||||
|
||||
When $S_1(f, P) \cap [a,b] = \emptyset$, then you can have two cases:
|
||||
\begin{itemize}
|
||||
\item $a \leq b < x_S$: $b$ has the shortest distance in $[a,b]$
|
||||
on the graph of $f$ to $P$.
|
||||
\item $x_S < a \leq b$: $a$ has the shortest distance in $[a,b]$
|
||||
on the graph of $f$ to $P$.
|
||||
\end{itemize}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue