mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-26 06:48:04 +02:00
Änderungen der Zugfahrt eingearbeitet.
This commit is contained in:
parent
44b274b3a6
commit
102fe0447b
10 changed files with 129 additions and 79 deletions
|
@ -1,8 +1,13 @@
|
|||
\chapter{Constant functions}
|
||||
\section{Defined on $\mdr$}
|
||||
\begin{lemma}
|
||||
Let $f:\mdr \rightarrow \mdr$, $f(x) := c$ with $c \in \mdr$ be a constant function.
|
||||
The situation can be seen in Figure~\ref{fig:constant-min-distance}.
|
||||
|
||||
Then $(x_P, f(x_P))$ is the only point on the graph of $f$ with
|
||||
minimal distance to $P$.
|
||||
\end{lemma}
|
||||
|
||||
The situation can be seen in Figure~\ref{fig:constant-min-distance}.
|
||||
\begin{figure}[htp]
|
||||
\centering
|
||||
\begin{tikzpicture}
|
||||
|
@ -43,20 +48,19 @@ The situation can be seen in Figure~\ref{fig:constant-min-distance}.
|
|||
\label{fig:constant-min-distance}
|
||||
\end{figure}
|
||||
|
||||
\begin{proof}
|
||||
The point $(x, f(x))$ with minimal distance can be calculated directly:
|
||||
\begin{align}
|
||||
d_{P,f}(x) &= \sqrt{(x_P - x)^2 + (y_P - f(x))^2}\\
|
||||
&= \sqrt{(x_P^2 - 2x_P x + x^2) + (y_P^2 - 2 y_P c + c^2)} \\
|
||||
&= \sqrt{x^2 - 2 x_P x + (x_P^2 + y_P^2 - 2 y_P c + c^2)}\label{eq:constant-function-distance}\\
|
||||
d_{P,f}(x) &= \sqrt{(x - x_P)^2 + (f(x) - y_P)^2}\\
|
||||
&= \sqrt{(x^2 - 2x_P x + x_P^2) + (c^2 - 2 c y_P + y_P^2)} \\
|
||||
&= \sqrt{x^2 - 2 x_P x + (x_P^2 + c^2 - 2 c y_P + y_P^2)}\label{eq:constant-function-distance}\\
|
||||
\xRightarrow{\text{Theorem}~\ref{thm:fermats-theorem}} 0 &\stackrel{!}{=} (d_{P,f}(x)^2)'\\
|
||||
&= 2x - 2x_P\\
|
||||
\Leftrightarrow x &\stackrel{!}{=} x_P
|
||||
\end{align}
|
||||
|
||||
Then $(x_P,f(x_P))$ has
|
||||
minimal distance to $P$. Every other point has higher distance.
|
||||
See Figure~\ref{fig:constant-min-distance} to see that intuition
|
||||
yields to the same results.
|
||||
So $(x_P,f(x_P))$ is the only point with minimal distance to $P$. $\qed$
|
||||
\end{proof}
|
||||
|
||||
This result means:
|
||||
|
||||
|
@ -124,8 +128,7 @@ given by:
|
|||
\begin{proof}
|
||||
\begin{align}
|
||||
\underset{x\in[a,b]}{\arg \min d_{P,f}(x)} &= \underset{x\in[a,b]}{\arg \min d_{P,f}(x)^2}\\
|
||||
&=\underset{x\in[a,b]}{\arg \min} \big (x^2 - 2x_P x + x_P^2 + \overbrace{(y_P^2 - 2 y_P c + c^2)}^{\text{constant}} \big )\\
|
||||
&=\underset{x\in[a,b]}{\arg \min} (x^2 - 2 x_P x + x_P^2)\\
|
||||
&=\underset{x\in[a,b]}{\arg \min} \big ((x-x_P)^2 + \overbrace{(y_P^2 - 2 y_P c + c^2)}^{\text{constant}} \big )\\
|
||||
&=\underset{x\in[a,b]}{\arg \min} (x-x_P)^2
|
||||
\end{align}
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue