2
0
Fork 0
mirror of https://github.com/MartinThoma/LaTeX-examples.git synced 2025-04-25 06:18:05 +02:00

Änderungen der Zugfahrt eingearbeitet.

This commit is contained in:
Martin Thoma 2014-01-02 16:16:13 +01:00
parent 44b274b3a6
commit 102fe0447b
10 changed files with 129 additions and 79 deletions

View file

@ -1,8 +1,13 @@
\chapter{Constant functions}
\section{Defined on $\mdr$}
\begin{lemma}
Let $f:\mdr \rightarrow \mdr$, $f(x) := c$ with $c \in \mdr$ be a constant function.
The situation can be seen in Figure~\ref{fig:constant-min-distance}.
Then $(x_P, f(x_P))$ is the only point on the graph of $f$ with
minimal distance to $P$.
\end{lemma}
The situation can be seen in Figure~\ref{fig:constant-min-distance}.
\begin{figure}[htp]
\centering
\begin{tikzpicture}
@ -43,20 +48,19 @@ The situation can be seen in Figure~\ref{fig:constant-min-distance}.
\label{fig:constant-min-distance}
\end{figure}
\begin{proof}
The point $(x, f(x))$ with minimal distance can be calculated directly:
\begin{align}
d_{P,f}(x) &= \sqrt{(x_P - x)^2 + (y_P - f(x))^2}\\
&= \sqrt{(x_P^2 - 2x_P x + x^2) + (y_P^2 - 2 y_P c + c^2)} \\
&= \sqrt{x^2 - 2 x_P x + (x_P^2 + y_P^2 - 2 y_P c + c^2)}\label{eq:constant-function-distance}\\
d_{P,f}(x) &= \sqrt{(x - x_P)^2 + (f(x) - y_P)^2}\\
&= \sqrt{(x^2 - 2x_P x + x_P^2) + (c^2 - 2 c y_P + y_P^2)} \\
&= \sqrt{x^2 - 2 x_P x + (x_P^2 + c^2 - 2 c y_P + y_P^2)}\label{eq:constant-function-distance}\\
\xRightarrow{\text{Theorem}~\ref{thm:fermats-theorem}} 0 &\stackrel{!}{=} (d_{P,f}(x)^2)'\\
&= 2x - 2x_P\\
\Leftrightarrow x &\stackrel{!}{=} x_P
\end{align}
Then $(x_P,f(x_P))$ has
minimal distance to $P$. Every other point has higher distance.
See Figure~\ref{fig:constant-min-distance} to see that intuition
yields to the same results.
So $(x_P,f(x_P))$ is the only point with minimal distance to $P$. $\qed$
\end{proof}
This result means:
@ -124,8 +128,7 @@ given by:
\begin{proof}
\begin{align}
\underset{x\in[a,b]}{\arg \min d_{P,f}(x)} &= \underset{x\in[a,b]}{\arg \min d_{P,f}(x)^2}\\
&=\underset{x\in[a,b]}{\arg \min} \big (x^2 - 2x_P x + x_P^2 + \overbrace{(y_P^2 - 2 y_P c + c^2)}^{\text{constant}} \big )\\
&=\underset{x\in[a,b]}{\arg \min} (x^2 - 2 x_P x + x_P^2)\\
&=\underset{x\in[a,b]}{\arg \min} \big ((x-x_P)^2 + \overbrace{(y_P^2 - 2 y_P c + c^2)}^{\text{constant}} \big )\\
&=\underset{x\in[a,b]}{\arg \min} (x-x_P)^2
\end{align}

View file

@ -1,8 +1,8 @@
\chapter{Cubic functions}
\section{Defined on $\mdr$}
Let $f(x) = a \cdot x^3 + b \cdot x^2 + c \cdot x + d$ be a cubic function
with $a \in \mdr \setminus \Set{0}$ and
$b, c, d \in \mdr$ be a function.
Let $f:\mdr \rightarrow \mdr, f(x) = a \cdot x^3 + b \cdot x^2 + c \cdot x + d$
be a cubic function with $a \in \mdr \setminus \Set{0}$ and
$b, c, d \in \mdr$.
\begin{figure}[htp]
\centering
@ -50,8 +50,8 @@ $b, c, d \in \mdr$ be a function.
%\todo[inline]{Write this}
\subsection{Calculate points with minimal distance}
\begin{theorem}
There cannot be an algebraic solution to the problem of finding
\begin{theorem}\label{thm:no-finite-solution}
There cannot be a finite, closed form solution to the problem of finding
a closest point $(x, f(x))$ to a given point $P$ when $f$ is
a polynomial function of degree $3$ or higher.
\end{theorem}
@ -71,29 +71,29 @@ $b, c, d \in \mdr$ be a function.
General algebraic equations of degree 5 don't have a solution formula.\footnote{TODO: Quelle}
Although here seems to be more structure, the resulting algebraic
equation can be almost any polynomial of degree 5:\footnote{Thanks to Peter Košinár on \href{http://math.stackexchange.com/a/584814/6876}{math.stackexchange.com} for this one}
equation can be almost any polynomial of degree 5:\footnote{Thanks to Peter Košinár on \href{http://math.stackexchange.com/a/584814/6876}{math.stackexchange.com} for the idea.}
\begin{align}
0 &\stackrel{!}{=} f'(x) \cdot \left (f(x) - y_p \right ) + (x - x_p)\\
&= \underbrace{3 a^2}_{= \tilde{a}} x^5 + \underbrace{5ab}_{\tilde{b}}x^4 + \underbrace{2(2ac + b^2 )}_{=: \tilde{c}}x^3 &+& \underbrace{3(ad+bc-ay_p)}_{\tilde{d}} x^2 \\
& &+& \underbrace{(2 b d+c^2+1-2 b y_p)}_{=: \tilde{e}}x+\underbrace{c d-c y_p-x_p}_{=: \tilde{f}}\\
&= \underbrace{3 a^2}_{= \tilde{a}} x^5 + \underbrace{5ab}_{= \tilde{b}}x^4 + \underbrace{2(2ac + b^2 )}_{= \tilde{c}}x^3 &+& \underbrace{3(ad+bc-ay_p)}_{= \tilde{d}} x^2 \\
& &+& \underbrace{(2 b d+c^2+1-2 b y_p)}_{= \tilde{e}}x+\underbrace{c d-c y_p-x_p}_{= \tilde{f}}\\
0 &\stackrel{!}{=} \tilde{a}x^5 + \tilde{b}x^4 + \tilde{c}x^3 + \tilde{d}x^2 + \tilde{e}x + \tilde{f}
\end{align}
\begin{enumerate}
\item For any coefficient $\tilde{a} \in \mdr_{> 0}$ of $x^5$ we can choose $a$ such that we get $\tilde{a}$.
\item For any coefficient $\tilde{b} \in \mdr \setminus \Set{0}$ of $x^4$ we can choose $b$ such that we get $\tilde{b}$.
\item With $c$, we can get any value of $\tilde{c} \in \mdr$.
\item With $d$, we can get any value of $\tilde{d} \in \mdr$.
\item With $y_p$, we can get any value of $\tilde{e} \in \mdr$.
\item With $x_p$, we can get any value of $\tilde{f} \in \mdr$.
\item For any coefficient $\tilde{a} \in \mdr_{> 0}$ of $x^5$ we can choose $a := \frac{1}{3} \sqrt{\tilde{a}}$ such that we get $\tilde{a}$.
\item For any coefficient $\tilde{b} \in \mdr \setminus \Set{0}$ of $x^4$ we can choose $b := \frac{1}{5a} \cdot \tilde{b}$ such that we get $\tilde{b}$.
\item With $c := -2b^2 + \frac{1}{4a} \tilde{c}$, we can get any value of $\tilde{c} \in \mdr$.
\item With $d := -bc + a y_p + \frac{1}{a} \tilde{d}$, we can get any value of $\tilde{d} \in \mdr$.
\item With $y_p := \frac{1}{2b}(2bd + c^2)\cdot \tilde{e}$, we can get any value of $\tilde{e} \in \mdr$.
\item With $x_p := cd - c y_P+\tilde{f}$, we can get any value of $\tilde{f} \in \mdr$.
\end{enumerate}
The first restriction guaratees that we have a polynomial of
degree 5. The second one is necessary, to get a high range of
$\tilde{e}$.
This means, that there is no solution formula for the problem of
This means that there is no finite solution formula for the problem of
finding the closest points on a cubic function to a given point,
because if there was one, you could use this formula for finding
roots of polynomials of degree 5. $\qed$
@ -101,9 +101,6 @@ $b, c, d \in \mdr$ be a function.
\subsection{Another approach}
\todo[inline]{Currently, this is only an idea. It might be usefull
to move the cubic function $f$ such that $f$ is point symmetric
to the origin. But I'm not sure how to make use of this symmetry.}
Just like we moved the function $f$ and the point to get in a
nicer situation, we can apply this approach for cubic functions.
@ -144,7 +141,7 @@ nicer situation, we can apply this approach for cubic functions.
\caption{Cubic functions with $b = d = 0$}
\end{figure}
First, we move $f_0$ by $\frac{b}{3a}$ to the right, so
First, we move $f_0$ by $\frac{b}{3a}$ in $x$ direction, so
\[f_1(x) = ax^3 + \frac{b^2 (c-1)}{3a} x + \frac{2b^3}{27 a^2} - \frac{bc}{3a} + d \;\;\;\text{ and }\;\;\;P_1 = (x_P + \frac{b}{3a}, y_P)\]
@ -161,6 +158,19 @@ because
&= ax^3 + \frac{b^2}{3a}\left (1-2+c \right )x + \frac{b^3}{9a^2} \left (1-\frac{1}{3} \right )- \frac{bc}{3a} + d
\end{align}
The we move it in $y$ direction by $- (\frac{2b^3}{27 a^2} - \frac{bc}{3a} + d)$:
\[f_2(x) = ax^3 + \frac{b^2 (c-1)}{3a} x \;\;\;\text{ and }\;\;\;P_2 = (x_P + \frac{b}{3a}, y_P - (\frac{2b^3}{27 a^2} - \frac{bc}{3a} + d))\]
Multiply everything by $\sgn(a)$:
\[f_3(x) = \underbrace{|a|}_{=: \alpha}x^3 + \underbrace{\frac{b^2 (c-1)}{3|a|}}_{=: \beta} x \;\;\;\text{ and }\;\;\;P_2 = (x_P + \frac{b}{3a}, \sgn(a) (y_P - \frac{2b^3}{27 a^2} + \frac{bc}{3a} - d))\]
Now the problem seems to be much simpler. The function $\alpha x^3 + \beta x$
with $\alpha > 0$ is centrally symmetric to $(0, 0)$.
\todo[inline]{Und weiter?}
\subsection{Number of points with minimal distance}
As this leads to a polynomial of degree 5 of which we have to find
roots, there cannot be more than 5 solutions.
@ -211,9 +221,6 @@ As soon as the values don't change much, you are close to a root.
The problem of this approach is choosing a starting value that is
close enough to the root. So we have to have a \enquote{good}
initial guess.
\subsubsection{Quadratic minimization}
\todo[inline]{TODO}
\clearpage
\subsubsection{Muller's method}

View file

@ -7,9 +7,8 @@ is by applying the \href{https://en.wikipedia.org/wiki/PID_algorithm}{PID algori
This algorithm needs to know the signed current error. So you need to
be able to get the minimal distance of a point (the position of the car)
to a cubic spline (the prefered path)
combined with the direction (left or right).
As you need to get the signed error (and one steering direction might
be prefered), it is not only necessary to
combined with sign (which represents the steering direction).
As one steering direction might be prefered, it is not only necessary to
get the minimal absolute distance, but might also help to get all points
on the spline with minimal distance.

View file

@ -5,7 +5,8 @@
$f(x) := m \cdot x + t$ with $m \in \mdr \setminus \Set{0}$ and
$t \in \mdr$ be a linear function.
Then the points $(x, f(x))$ with minimal distance are given by:
Then there is only one point $(x, f(x))$ on the graph of $f$ with
minimal distance to $P = (x_P, y_P)$. This point is given by
\[x = \frac{m}{m^2+1} \left ( y_P + \frac{1}{m} \cdot x_P - t \right )\]
\end{theorem}
@ -35,6 +36,8 @@
\addplot[domain=-5:5, thick,samples=50, red] {0.5*x};
\addplot[domain=-5:5, thick,samples=50, blue, dashed] {-2*x+6};
\addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)};
\newcommand{\R}{0.9}
\addplot [domain=0:2*pi,samples=50, dotted]({\R*cos(deg(x))+2},{\R*sin(deg(x))+2});
\addplot[blue, nodes near coords=$f_\bot$,every node near coord/.style={anchor=225}] coordinates {(1.5, 3)};
\addplot[red, nodes near coords=$f$,every node near coord/.style={anchor=225}] coordinates {(0.9, 0.5)};
\addlegendentry{$f(x)=\frac{1}{2}x$}
@ -57,7 +60,7 @@
&= \frac{m}{m^2+1} \left ( y_P + \frac{1}{m} \cdot x_P - t \right )\label{eq:solution-linear-r}
\end{align}
It is obvious that a minium has to exist, the $x$ from Equation~\ref{eq:solution-linear-r}
has to be this minimum.
has to be this minimum. $\qed$
\end{proof}
\clearpage
@ -113,4 +116,39 @@ The point with minimum distance can be found by:
\Set{b} &\text{if } S_1(f, P) \ni x > b
\end{cases}\]
\todo[inline]{argument? proof?}
If $S_1(f, P) \cap [a,b] \neq \emptyset$, then $\underset{x\in[a,b]}{\arg \min d_{P,f}(x)} = S_1(f,P) \cap [a,b]$,
because $S_1(f,P)$ gives all global minima of $f$. Those are also
minima for the intervall $[a,b]$. There are not more minima, because
$S_1$ gives all minima of $P$ to $f$.
If $S_1(f, P) \cap [a,b] = \emptyset$, then it is not that simple.
But we can calculate the distance function:
\begin{align}
d_{P,f}(x) &= \sqrt{(x-x_P)^2 + (f(x) - y_P)^2}\\
&= \sqrt{(x^2 - 2x x_P + x_P^2) + (mx + (t-y_P))^2}\\
&= \sqrt{(x^2 - 2x x_P + x_P^2) + m^2 x^2 + 2mx(t-y_P) + (t-y_P)^2}\\
&= \sqrt{x^2(1+m^2) + x(-2 x_P + 2m(t-y_P)) + (x_P^2 + (t-y_P)^2)}
\end{align}
This function (defined on $\mdr$) is symmetry to the axis
\begin{align}
x_S &= - \frac{-2 x_P + 2m(t-y_P)}{2(1+m^2)}\\
&= \frac{x_P - m(t-y_P)}{1+m^2}\\
&= \frac{m}{m^2+1} (y_P + \frac{1}{m} x_P - t)
\end{align}
$f$ is on $(-\infty, x_S]$ strictly monotonically decreasing and
on $[x_S, + \infty)$ strictly monotonically increasing.
Thus we can conclude:
\[\forall x,y \in \mdr: x \leq y < x_S \Rightarrow d_{P,f}(x_S) < d_{P,f}(y) \leq d_{P,f}(x)\]
\[\forall x,y \in \mdr: x_S < y \leq x \Rightarrow d_{P,f}(x_S) < d_{P,f}(y) \leq d_{P,f}(x)\]
When $S_1(f, P) \cap [a,b] = \emptyset$, then you can have two cases:
\begin{itemize}
\item $a \leq b < x_S$: $b$ has the shortest distance in $[a,b]$
on the graph of $f$ to $P$.
\item $x_S < a \leq b$: $a$ has the shortest distance in $[a,b]$
on the graph of $f$ to $P$.
\end{itemize}

View file

@ -9,9 +9,9 @@ Now there is finite set $M = \Set{x_1, \dots, x_n} \subseteq D$ of minima for gi
\[M = \Set{x \in D | d_{P,f}(x) = \min_{\overline{x} \in D} d_{P,f}(\overline{x})}\]
But minimizing $d_{P,f}$ is the same as minimizing
$d_{P,f}^2 = x_p^2 - 2x_p x + x^2 + y_p^2 - 2y_p f(x) + f(x)^2$.
$d_{P,f}^2 = (x_p^2 - 2x_p x + x^2) + (y_p^2 - 2y_p f(x) + f(x)^2)$.
In order to solve the minimal distance problem, Fermat's theorem
In order to solve the minimal distance problem, Fermat's theorem
about stationary points will be tremendously usefull:
\begin{theorem}[Fermat's theorem about stationary points]\label{thm:fermats-theorem}
@ -20,10 +20,15 @@ about stationary points will be tremendously usefull:
Then: $f'(x_0) = 0$.
\end{theorem}
So in fact you can calculate the roots of $(d_{P,f}(x))'$ to get
candidates for minimal distance. These candidates include all points
with minimal distance, but might also contain more. Example~\ref{ex:false-positive}
shows such a situation.
So in fact you can calculate the roots of $(d_{P,f}(x))'$ or $(d_{P,f}(x)^2)'$ to get
candidates for minimal distance.
$(d_{P,f}(x)^2)'$ is a polynomial if $f$ is a polynomial. So if $f$
is a polynomial, we can always get a finite number of candidates by
finding roots of $(d_{P,f}(x)^2)'$. But this gets difficult when $f$
has degree 3 or higher as explained in Theorem~\ref{thm:no-finite-solution}.
Another problem one has to bear in mind is that these candidates
include all points with minimal distance, but might also contain
more. Example~\ref{ex:false-positive} shows such a situation.
Let $S_n$ be the function that returns the set of solutions for a
polynomial $f$ of degree $n$ and a point $P$:

View file

@ -1,10 +1,8 @@
$4 \alpha^3 + 27 \beta^2 \geq 0$:
One solution of Equation~\ref{eq:simple-cubic-equation-for-quadratic-distance}
is
The first solution of $x^3 + \alpha x + \beta = 0$ is
\[x = \frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t}\]
When you insert this in Equation~\ref{eq:simple-cubic-equation-for-quadratic-distance}
you get:\footnote{Remember: $(a-b)^3 = a^3-3 a^2 b+3 a b^2-b^3$}
Let's validate this solution:
\allowdisplaybreaks
\begin{align}
0 &\stackrel{!}{=} \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right )^3 + \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
@ -12,27 +10,24 @@ you get:\footnote{Remember: $(a-b)^3 = a^3-3 a^2 b+3 a b^2-b^3$}
- 3 (\frac{t}{\sqrt[3]{18}})^2 \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t}
+ 3 (\frac{t}{\sqrt[3]{18}})(\frac{\sqrt[3]{\frac{2}{3}} \alpha }{t})^2
- (\frac{\sqrt[3]{\frac{2}{3}} \alpha }{t})^3
+ \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
+ \frac{t \alpha}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha^2 }{t} + \beta\\
&= \frac{t^3}{18}
- \frac{3t^2}{\sqrt[3]{18^2}} \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t}
+ \frac{3t}{\sqrt[3]{18}} \frac{\sqrt[3]{\frac{4}{9}} \alpha^2 }{t^2}
- \frac{\frac{2}{3} \alpha^3 }{t^3}
+ \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
+ \frac{t \alpha }{\sqrt[3]{18}} - \frac{\sqrt[3]{2} \alpha^2 }{\sqrt[3]{3} t} + \beta\\
&= \frac{t^3}{18}
- \frac{\sqrt[3]{18} t \alpha}{\sqrt[3]{18^2}}
+ \frac{\sqrt[3]{12} \alpha^2}{\sqrt[3]{18} t}
- \frac{2 \alpha^3 }{3t^3}
+ \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
+ \frac{t \alpha }{\sqrt[3]{18}} - \frac{\sqrt[3]{2} \alpha^2 }{\sqrt[3]{3} t} + \beta\\
&= \frac{t^3}{18}
- \frac{t \alpha}{\sqrt[3]{18}}
\color{red}+ \frac{\sqrt[3]{2} \alpha^2}{\sqrt[3]{3} t} \color{black}
- \frac{2 \alpha^3 }{3 t^3}
+ \color{red}\alpha \color{black} \left (\frac{t}{\sqrt[3]{18}} \color{red}- \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \color{black}\right )
+ \beta\\
&= \frac{t^3}{18} \color{blue}- \frac{t \alpha}{\sqrt[3]{18}} \color{black}
- \frac{2 \alpha^3 }{3 t^3}
\color{blue}+ \frac{\alpha t}{\sqrt[3]{18}} \color{black}
+ \beta\\
\color{blue} - \frac{t \alpha}{\sqrt[3]{18}}
\color{red} + \frac{\sqrt[3]{2} \alpha^2}{\sqrt[3]{3} t}
\color{black}- \frac{2 \alpha^3 }{3 t^3}
\color{blue} + \frac{t \alpha }{\sqrt[3]{18}}
\color{red} - \frac{\sqrt[3]{2} \alpha^2 }{\sqrt[3]{3} t}
\color{black}+ \beta\\
&= \frac{t^3}{18} - \frac{2 \alpha^3 }{3 t^3} + \beta\\
&= \frac{t^6 - 12 \alpha^3 + \beta 18 t^3}{18t^3}
\end{align}

View file

@ -1,8 +1,8 @@
One solution is
The second solution of $x^3+\alpha x + \beta=0$ is
\[x = \frac{(1+i \sqrt{3})\alpha}{\sqrt[3]{12} \cdot t}
-\frac{(1-i\sqrt{3}) t}{2\sqrt[3]{18}}\]
We will verify it in multiple steps. First, get $x^3$:
We will verify it in multiple steps. First, calculate $x^3$:
\begin{align}
x^3 &= \underbrace{\left (\frac{(1+i\sqrt{3})\alpha}{\sqrt[3]{12} \cdot t} \right)^3}_{=: \raisebox{.5pt}{\textcircled{\raisebox{-.9pt} {1}}}}
\underbrace{- 3 \left(\frac{(1+i\sqrt{3})\alpha}{\sqrt[3]{12} \cdot t} \right)^2 \left(\frac{(1-i\sqrt{3})t}{2 \sqrt[3]{18}} \right)}_{=: \raisebox{.5pt}{\textcircled{\raisebox{-.9pt} {2}}}}\\
@ -58,5 +58,7 @@ Now continue with only the numerator
\color{orange}- 2 \cdot \sqrt{3(4 \alpha^3 + 27 \beta^2)} \cdot 9\beta\color{black}
+ \color{blue}81 \beta^2\color{black}
\right )\\
&\hphantom{{}=}+ 18 \beta (\color{orange}\sqrt{3(4 \alpha^3 + 27 \beta^2)}\color{black} \color{blue}- 9 \beta\color{black})
&\hphantom{{}=}+ 18 \beta (\color{orange}\sqrt{3(4 \alpha^3 + 27 \beta^2)}\color{black} \color{blue}- 9 \beta\color{black}) \\
&= 81 \beta^2 + 81 \beta^2 - 2 \cdot 81 \beta^2\\
&= 0
\end{align}

View file

@ -1,4 +1,4 @@
One solution is
The third and thus last solution of $x^3 + \alpha x + \beta = 0$ is
\[x = \frac{(1-i \sqrt{3}) \alpha}{\sqrt[3]{12} \cdot t}
-\frac{(1+i\sqrt{3}) t}{2\sqrt[3]{18}}\]

View file

@ -1,6 +1,6 @@
\chapter{Quadratic functions}
\section{Defined on $\mdr$}
Let $f(x) = a \cdot x^2 + b \cdot x + c$ with $a \in \mdr \setminus \Set{0}$ and
Let $f:\mdr \rightarrow \mdr, f(x) = a \cdot x^2 + b \cdot x + c$ with $a \in \mdr \setminus \Set{0}$ and
$b, c \in \mdr$ be a quadratic function.
\begin{figure}[htp]
@ -41,7 +41,7 @@ $b, c \in \mdr$ be a quadratic function.
\end{figure}
\subsection{Calculate points with minimal distance}
In this case, $d_{P,f}^2$ is polynomial of degree 4.
In this case, $d_{P,f}^2$ is polynomial of degree $n^2 = 4$.
We use Theorem~\ref{thm:fermats-theorem}:\nobreak
\begin{align}
0 &\overset{!}{=} (d_{P,f}^2)'\\
@ -58,10 +58,11 @@ This is an algebraic equation of degree 3.
There can be up to 3 solutions in such an equation. Those solutions
can be found with a closed formula. But not every solution of the
equation given by Theorem~\ref{thm:fermats-theorem}
has to be a solution to the given problem.
has to be a solution to the given problem as you can see in
Example~\ref{ex:false-positive}.
\goodbreak
\begin{example}\label{ex:false-positive}
Let $a = 1, b = 0, c= 1, x_p= 0, y_p = 1$.
Let $a = 1, b = 0, c=-1, x_p= 0, y_p = 1$.
So $f(x) = x^2 - 1$ and $P(0, 1)$.
\begin{align}
\xRightarrow{\text{Equation}~\ref{eq:quadratic-derivative-eq-0}} 0 &\stackrel{!}{=} 2x^3 - 3x\\
@ -86,12 +87,13 @@ has to be a solution to the given problem.
\begin{proof}
The number of closests points of $f$ cannot be bigger than 3, because
Equation~\ref{eq:quadratic-derivative-eq-0} is a polynomial function
of degree 3. Such a function can have at most 3 roots.
of degree 3. Such a function can have at most 3 roots. As $f$ has
at least one point on its graph, there is at least one point with
minimal distance.
In the following, I will do some transformations with $f = f_0$ and
$P = P_0$.
Moving $f_0$ and $P_0$ simultaneously in $x$ or $y$ direction does
$P = P_0$. This will make it easier to calculate the minimal distance
points. Moving $f_0$ and $P_0$ simultaneously in $x$ or $y$ direction does
not change the minimum distance. Furthermore, we can find the
points with minimum distance on the moved situation and calculate
the minimum points in the original situation.
@ -128,9 +130,9 @@ Then compute:
&= \sqrt{\left (a x^2 + \nicefrac{1}{2a}- w \right )^2 + \left (w^2 - \left (\frac{1-2 a w}{2a} \right )^2 \right)}
\end{align}
The term
This means, the term
\[a^2 x^2 + (\nicefrac{1}{2a}- w)\]
should get as close to $0$ as possilbe when we want to minimize
has to get as close to $0$ as possilbe when we want to minimize
$d_{P,{f_2}}$. For $w \leq \nicefrac{1}{2a}$ you only have $x = 0$ as a minimum.
For all other points $P = (0, w)$, there are exactly two minima $x_{1,2} = \pm \sqrt{\frac{\frac{1}{2a} - w}{a}}$.
$\qed$
@ -153,9 +155,9 @@ Otherwise, there is only one solution $x_1 = 0$.
&= \sqrt{a^2x^4 + (1- 2 aw)x^2 +(- 2z)x + z^2 + w^2}\\
0 &\stackrel{!}{=} \Big(\big(d_{P, {f_2}}(x)\big)^2\Big)' \\
&= 4a^2x^3 + 2(1- 2 aw)x +(- 2z)\\
&= 2 \left (2a^2x^2 + (1- 2 aw) \right )x - 2z\\
&= 2 \left (2a^2x^3 + (1- 2 aw)x \right ) - 2z\\
\Leftrightarrow 0 &\stackrel{!}{=} 2a^2x^3 + (1- 2 aw) x - z\\
\Leftrightarrow 0 &\stackrel{!}{=} x^3 + \underbrace{\frac{1- 2 aw}{2 a^2}}_{=: \alpha} x + \underbrace{\frac{-z}{2 a^2}}_{=: \beta}\\
\stackrel{a \neq 0}{\Leftrightarrow} 0 &\stackrel{!}{=} x^3 + \underbrace{\frac{1- 2 aw}{2 a^2}}_{=: \alpha} x + \underbrace{\frac{-z}{2 a^2}}_{=: \beta}\\
&= x^3 + \alpha x + \beta\label{eq:simple-cubic-equation-for-quadratic-distance}
\end{align}
@ -166,7 +168,8 @@ I will make use of the following identities:
\begin{align*}
(1-i \sqrt{3})^2 &= -2 (1+i \sqrt{3})\\
(1+i \sqrt{3})^2 &= -2 (1-i \sqrt{3})\\
(1 \pm i \sqrt{3})^3 &= -8
(1 \pm i \sqrt{3})^3 &= -8\\
(a-b)^3 &= a^3-3 a^2 b+3 a b^2-b^3
\end{align*}
\textbf{Case 2.1:}
@ -194,8 +197,6 @@ t &:= \sqrt[3]{\sqrt{3 \cdot (4 \alpha^3 + 27 \beta^2)} -9\beta}\\
x_1 = \frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} &\text{if } x_P \neq x_S
\end{cases}
\end{align*}
I call this function $S_2: \Set{\text{Quadratic functions}} \times \mdr^2 \rightarrow \mathcal{P}({\mdr})$.
\clearpage
\section{Defined on a closed interval $[a,b] \subseteq \mdr$}