mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-26 06:48:04 +02:00
Weitere Aufgaben hinzugefügt
This commit is contained in:
parent
d9a06acf14
commit
0e0896033f
9 changed files with 221 additions and 48 deletions
|
@ -141,8 +141,32 @@ Folge $(G_n)$ aus Graphen abgebildet. Wie sieht $G_4$ aus?
|
|||
\end{gallery}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Aufgabe 9, Teil 1 (Lösung)}
|
||||
\begin{center}
|
||||
\input{graphs/triangular-4}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Aufgabe 9, Teil 1 (Lösung)}
|
||||
\begin{center}
|
||||
\input{graphs/triangular-5}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Aufgabe 9, Teil 1 (Lösung)}
|
||||
\begin{center}
|
||||
\input{graphs/triangular-6}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Aufgabe 9, Teil 2}
|
||||
Wieviele Ecken / Kanten hat $G_n = (E_n, K_n)$?
|
||||
Wie viele Ecken und wie viele Kanten hat $G_i$?
|
||||
|
||||
\begin{gallery}
|
||||
\galleryimage{graphs/triangular-1}
|
||||
\galleryimage{graphs/triangular-2}
|
||||
\galleryimage{graphs/triangular-3}
|
||||
\end{gallery}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Aufgabe 9, Teil 2: Antwort}
|
||||
|
@ -161,7 +185,32 @@ Kanten:
|
|||
\end{align}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Aufgabe 9, Teil 3}
|
||||
Gebe $G_i$ formal an.
|
||||
|
||||
\begin{gallery}
|
||||
\galleryimage{graphs/triangular-1}
|
||||
\galleryimage{graphs/triangular-2}
|
||||
\galleryimage{graphs/triangular-3}
|
||||
\end{gallery}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Aufgabe 9, Teil 3 (Lösung)}
|
||||
Gebe $G_n$ formal an.
|
||||
|
||||
\begin{gallery}
|
||||
\galleryimage{graphs/triangular-1}
|
||||
\galleryimage{graphs/triangular-2}
|
||||
\galleryimage{graphs/triangular-3}
|
||||
\end{gallery}
|
||||
|
||||
\begin{align*}
|
||||
E_n &= \Set{e_{x,y} | y \in 1, \dots, n;\; x \in y, \dots, 2 \cdot n - y \text{ mit } x-y \equiv 0 \mod 2}\\
|
||||
K_n &= \Set{\Set{e_{x,y}, e_{i,j}} \in E_n^2 | (x+2=i \land y=j) \lor (x+1=i \land y\pm1=j)}\\
|
||||
G_n &= (E_n, K_n)
|
||||
\end{align*}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\subsection{Bildquelle}
|
||||
\begin{frame}{Bildquelle}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue