2
0
Fork 0
mirror of https://github.com/MartinThoma/LaTeX-examples.git synced 2025-04-26 06:48:04 +02:00

minor changes

This commit is contained in:
Martin Thoma 2013-12-21 22:20:30 +01:00
parent a1274e176f
commit 03d2d98754
7 changed files with 36 additions and 47 deletions

View file

@ -46,30 +46,18 @@
\end{figure}
\begin{proof}
Now you can drop a perpendicular $f_\bot$ through $P$ on $f(x)$. The
slope of $f_\bot$ is $- \frac{1}{m}$ and $t_\bot$ can be calculated:\nobreak
With Theorem~\ref{thm:fermats-theorem} you get:
\begin{align}
f_\bot(x) &= - \frac{1}{m} \cdot x + t_\bot\\
\Rightarrow y_P &= - \frac{1}{m} \cdot x_P + t_\bot\\
\Leftrightarrow t_\bot &= y_P + \frac{1}{m} \cdot x_P
0 &\stackrel{!}{=} (d_{P,f}(x)^2)'\\
&= 2(x-x_P) + 2 (f(x) - y_P)f'(x)\\
\Leftrightarrow 0 &\stackrel{!}{=} x - x_P + (f(x) - y_P) f'(x)\\
&= x- x_P + (mx+t - y_P)\cdot m\\
&= x (m+1) + m(t-y_P) - x_P\\
\Leftrightarrow x &\stackrel{!}{=} \frac{x_p - m(t-y_p)}{m^2+1}\\
&= \frac{m}{m^2+1} \left ( y_P + \frac{1}{m} \cdot x_P - t \right )\label{eq:solution-linear-r}
\end{align}
The point $(x, f(x))$ where the perpendicular $f_\bot$ crosses $f$
is calculated this way:
\begin{align}
f(x) &= f_\bot(x)\\
\Leftrightarrow m \cdot x + t &= - \frac{1}{m} \cdot x + \left(y_P + \frac{1}{m} \cdot x_P \right)\\
\Leftrightarrow \left (m + \frac{1}{m} \right ) \cdot x &= y_P + \frac{1}{m} \cdot x_P - t\\
\Leftrightarrow x &= \frac{m}{m^2+1} \left ( y_P + \frac{1}{m} \cdot x_P - t \right )\label{eq:solution-of-the-linear-problem}
\end{align}
There is only one point with minimal distance. I'll call the result
from line~\ref{eq:solution-of-the-linear-problem} \enquote{solution of
the linear problem} and the function that gives this solution
$S_1(f,P)$.
See Figure~\ref{fig:linear-min-distance}
to get intuition about the geometry used. $\qed$
It is obvious that a minium has to exist, the $x$ from Equation~\ref{eq:solution-linear-r}
has to be this minimum.
\end{proof}
\clearpage