mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-26 06:48:04 +02:00
minor changes
This commit is contained in:
parent
a1274e176f
commit
03d2d98754
7 changed files with 36 additions and 47 deletions
|
@ -46,30 +46,18 @@
|
|||
\end{figure}
|
||||
|
||||
\begin{proof}
|
||||
Now you can drop a perpendicular $f_\bot$ through $P$ on $f(x)$. The
|
||||
slope of $f_\bot$ is $- \frac{1}{m}$ and $t_\bot$ can be calculated:\nobreak
|
||||
With Theorem~\ref{thm:fermats-theorem} you get:
|
||||
\begin{align}
|
||||
f_\bot(x) &= - \frac{1}{m} \cdot x + t_\bot\\
|
||||
\Rightarrow y_P &= - \frac{1}{m} \cdot x_P + t_\bot\\
|
||||
\Leftrightarrow t_\bot &= y_P + \frac{1}{m} \cdot x_P
|
||||
0 &\stackrel{!}{=} (d_{P,f}(x)^2)'\\
|
||||
&= 2(x-x_P) + 2 (f(x) - y_P)f'(x)\\
|
||||
\Leftrightarrow 0 &\stackrel{!}{=} x - x_P + (f(x) - y_P) f'(x)\\
|
||||
&= x- x_P + (mx+t - y_P)\cdot m\\
|
||||
&= x (m+1) + m(t-y_P) - x_P\\
|
||||
\Leftrightarrow x &\stackrel{!}{=} \frac{x_p - m(t-y_p)}{m^2+1}\\
|
||||
&= \frac{m}{m^2+1} \left ( y_P + \frac{1}{m} \cdot x_P - t \right )\label{eq:solution-linear-r}
|
||||
\end{align}
|
||||
|
||||
The point $(x, f(x))$ where the perpendicular $f_\bot$ crosses $f$
|
||||
is calculated this way:
|
||||
\begin{align}
|
||||
f(x) &= f_\bot(x)\\
|
||||
\Leftrightarrow m \cdot x + t &= - \frac{1}{m} \cdot x + \left(y_P + \frac{1}{m} \cdot x_P \right)\\
|
||||
\Leftrightarrow \left (m + \frac{1}{m} \right ) \cdot x &= y_P + \frac{1}{m} \cdot x_P - t\\
|
||||
\Leftrightarrow x &= \frac{m}{m^2+1} \left ( y_P + \frac{1}{m} \cdot x_P - t \right )\label{eq:solution-of-the-linear-problem}
|
||||
\end{align}
|
||||
|
||||
There is only one point with minimal distance. I'll call the result
|
||||
from line~\ref{eq:solution-of-the-linear-problem} \enquote{solution of
|
||||
the linear problem} and the function that gives this solution
|
||||
$S_1(f,P)$.
|
||||
|
||||
See Figure~\ref{fig:linear-min-distance}
|
||||
to get intuition about the geometry used. $\qed$
|
||||
It is obvious that a minium has to exist, the $x$ from Equation~\ref{eq:solution-linear-r}
|
||||
has to be this minimum.
|
||||
\end{proof}
|
||||
\clearpage
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue