2016-01-10 22:58:39 +01:00
|
|
|
\documentclass[hyperref={pdfpagelabels=false},usepdftitle=false]{beamer}
|
|
|
|
\usetheme{Frankfurt} % see http://deic.uab.es/~iblanes/beamer_gallery/index_by_theme.html as fallback
|
|
|
|
\usecolortheme{beaver}
|
|
|
|
\usefonttheme{professionalfonts}
|
|
|
|
\usepackage{hyperref}
|
|
|
|
\usepackage[utf8]{inputenc} % this is needed for german umlauts
|
|
|
|
\usepackage[english]{babel} % this is needed for german umlauts
|
|
|
|
\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
|
|
|
|
\usepackage{tikz}
|
2016-01-11 10:18:05 +01:00
|
|
|
\usepackage{incgraph}
|
2016-01-10 22:58:39 +01:00
|
|
|
|
|
|
|
\beamertemplatenavigationsymbolsempty
|
|
|
|
|
|
|
|
% Begin:Move navigation from top to bottom
|
|
|
|
\setbeamertemplate{navigation symbols}{}
|
|
|
|
\makeatletter
|
|
|
|
\setbeamertemplate{footline}
|
|
|
|
{%
|
|
|
|
\pgfuseshading{beamer@barshade}%
|
|
|
|
\ifbeamer@sb@subsection%
|
|
|
|
\vskip-9.75ex%
|
|
|
|
\else%
|
|
|
|
\vskip-7ex%
|
|
|
|
\fi%
|
|
|
|
\begin{beamercolorbox}[ignorebg,ht=2.25ex,dp=3.75ex]{section in head/foot}
|
|
|
|
\insertnavigation{\paperwidth}
|
|
|
|
\end{beamercolorbox}%
|
|
|
|
\ifbeamer@sb@subsection%
|
|
|
|
\begin{beamercolorbox}[ignorebg,ht=2.125ex,dp=1.125ex,%
|
|
|
|
leftskip=.3cm,rightskip=.3cm plus1fil]{subsection in head/foot}
|
|
|
|
\usebeamerfont{subsection in head/foot}\insertsubsectionhead
|
|
|
|
\end{beamercolorbox}%
|
|
|
|
\fi%
|
|
|
|
}%
|
|
|
|
\setbeamertemplate{headline}{%
|
|
|
|
}
|
|
|
|
\makeatother
|
|
|
|
% End:Move navigation from top to bottom
|
|
|
|
|
|
|
|
|
|
|
|
\begin{document}
|
|
|
|
|
|
|
|
\title{Art in Machine Learning}
|
|
|
|
\subtitle{\href{https://github.com/MartinThoma/}{github.com/MartinThoma/}}
|
|
|
|
\author{Martin Thoma}
|
|
|
|
\date{15. Januar 2016}
|
|
|
|
\subject{Machine Learning}
|
|
|
|
|
|
|
|
\frame{\titlepage}
|
|
|
|
|
|
|
|
\section{Examples}
|
|
|
|
\subsection{Examples}
|
2016-01-11 10:18:05 +01:00
|
|
|
|
|
|
|
\incgraph{0099.jpg}
|
2016-01-10 22:58:39 +01:00
|
|
|
|
|
|
|
\section{ML-Basics}
|
|
|
|
\subsection{ML-Basics}
|
|
|
|
|
|
|
|
\begin{frame}{Was ist Machine Learning?}
|
|
|
|
\begin{block}{Definition by Tom Mitchell: ML}
|
|
|
|
A computer program is said to learn from \textbf{experience} $E$ with
|
|
|
|
respect to some class of \textbf{tasks} $T$ and \textbf{performance
|
|
|
|
measure} $P$, if its performance at tasks in $T$, as measured by $P$,
|
|
|
|
improves with experience $E$.
|
|
|
|
\end{block}
|
|
|
|
\end{frame}
|
|
|
|
|
2016-01-11 10:18:05 +01:00
|
|
|
\end{document}
|