mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-26 06:48:04 +02:00
138 lines
4.9 KiB
TeX
138 lines
4.9 KiB
TeX
|
\documentclass[a4paper,9pt]{scrartcl}
|
||
|
\usepackage{amssymb, amsmath} % needed for math
|
||
|
\usepackage{} % needed for math
|
||
|
\usepackage[utf8]{inputenc} % this is needed for umlauts
|
||
|
\usepackage[ngerman]{babel} % this is needed for umlauts
|
||
|
\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
|
||
|
\usepackage[margin=2.5cm]{geometry} %layout
|
||
|
\usepackage{hyperref} % links im text
|
||
|
\usepackage{color}
|
||
|
\usepackage{framed}
|
||
|
\usepackage{enumerate} % for advanced numbering of lists
|
||
|
\clubpenalty = 10000 % Schusterjungen verhindern
|
||
|
\widowpenalty = 10000 % Hurenkinder verhindern
|
||
|
|
||
|
\hypersetup{
|
||
|
pdfauthor = {Martin Thoma},
|
||
|
pdfkeywords = {Lineare Algebra},
|
||
|
pdftitle = {Lineare Algebra - Definitionen}
|
||
|
}
|
||
|
|
||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
% Custom definition style, by %
|
||
|
% http://mathoverflow.net/questions/46583/what-is-a-satisfactory-way-to-format-definitions-in-latex/58164#58164
|
||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
\makeatletter
|
||
|
\newdimen\errorsize \errorsize=0.2pt
|
||
|
% Frame with a label at top
|
||
|
\newcommand\LabFrame[2]{%
|
||
|
\fboxrule=\FrameRule
|
||
|
\fboxsep=-\errorsize
|
||
|
\textcolor{FrameColor}{%
|
||
|
\fbox{%
|
||
|
\vbox{\nobreak
|
||
|
\advance\FrameSep\errorsize
|
||
|
\begingroup
|
||
|
\advance\baselineskip\FrameSep
|
||
|
\hrule height \baselineskip
|
||
|
\nobreak
|
||
|
\vskip-\baselineskip
|
||
|
\endgroup
|
||
|
\vskip 0.5\FrameSep
|
||
|
\hbox{\hskip\FrameSep \strut
|
||
|
\textcolor{TitleColor}{\textbf{#1}}}%
|
||
|
\nobreak \nointerlineskip
|
||
|
\vskip 1.3\FrameSep
|
||
|
\hbox{\hskip\FrameSep
|
||
|
{\normalcolor#2}%
|
||
|
\hskip\FrameSep}%
|
||
|
\vskip\FrameSep
|
||
|
}}%
|
||
|
}}
|
||
|
\definecolor{FrameColor}{rgb}{0.25,0.25,1.0}
|
||
|
\definecolor{TitleColor}{rgb}{1.0,1.0,1.0}
|
||
|
|
||
|
\newenvironment{contlabelframe}[2][\Frame@Lab\ (cont.)]{%
|
||
|
% Optional continuation label defaults to the first label plus
|
||
|
\def\Frame@Lab{#2}%
|
||
|
\def\FrameCommand{\LabFrame{#2}}%
|
||
|
\def\FirstFrameCommand{\LabFrame{#2}}%
|
||
|
\def\MidFrameCommand{\LabFrame{#1}}%
|
||
|
\def\LastFrameCommand{\LabFrame{#1}}%
|
||
|
\MakeFramed{\advance\hsize-\width \FrameRestore}
|
||
|
}{\endMakeFramed}
|
||
|
\newcounter{definition}
|
||
|
\newenvironment{definition}[1]{%
|
||
|
\par
|
||
|
\refstepcounter{definition}%
|
||
|
\begin{contlabelframe}{Definition \thedefinition:\quad #1}
|
||
|
\noindent\ignorespaces}
|
||
|
{\end{contlabelframe}}
|
||
|
\makeatother
|
||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
% Begin document %
|
||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
\begin{document}
|
||
|
|
||
|
\begin{definition}{injektiv, surjektiv und bijektiv}
|
||
|
Sei $f: A \rightarrow B$ eine Abbildung.
|
||
|
\begin{enumerate}[(a)]
|
||
|
\item $f$ heißt \textbf{surjektiv} $:\Leftrightarrow f(A) = B$
|
||
|
\item $f$ heißt \textbf{injektiv} $:\Leftrightarrow \forall x_1, x_2 \in A: x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$
|
||
|
\item $f$ heißt \textbf{bijektiv} $:\Leftrightarrow f$ ist surjektiv und injektiv
|
||
|
\end{enumerate}
|
||
|
\end{definition}
|
||
|
|
||
|
\begin{definition}{Relation}
|
||
|
Seien A und B Mengen. $R \subseteq A \times B$ heißt \textbf{Relation}.
|
||
|
\end{definition}
|
||
|
|
||
|
\begin{definition}{Ordnungsrelation}
|
||
|
Eine Relation $\leq$ heißt Ordnungsrelation in A und $(A, \leq)$ heißt
|
||
|
(partiell) geordnete Menge, wenn für alle $a, b, c \in A$ gilt:
|
||
|
|
||
|
\begin{description}
|
||
|
\item[O1] $a \leq a$ (reflexiv)
|
||
|
\item[O2] $a \leq b \land b \leq a \Rightarrow a = b$ (antisymmetrisch)
|
||
|
\item[O3] $a \leq b \land b \leq c \Rightarrow a \leq c$ (transitiv)
|
||
|
\end{description}
|
||
|
|
||
|
\noindent $(A, \leq)$ heißt total geordnet $:\Leftrightarrow \forall a, b, \in A: a \leq b \lor b \leq a$
|
||
|
\end{definition}
|
||
|
|
||
|
\begin{definition}{Äquivalenzrelation}
|
||
|
Sei $R \subseteq A \times A$ eine Relation.
|
||
|
R heißt Äquivalenzrelation, wenn für alle $a, b, c \in A$ gilt:
|
||
|
|
||
|
\begin{description}
|
||
|
\item[Ä1] $a R a$ (reflexiv)
|
||
|
\item[Ä2] $a R b \Rightarrow b R a$ (symmetrisch)
|
||
|
\item[Ä3] $a R b \land b R c \Rightarrow a R c$ (transitiv)
|
||
|
\end{description}
|
||
|
\end{definition}
|
||
|
|
||
|
\begin{definition}{Assoziativität}
|
||
|
Sei A eine Menge und $*$ eine Verknüpfung auf A.\\
|
||
|
A heißt \textbf{assoziativ} $:\Leftrightarrow \forall a, b, c \in A: (a * b) * c = a * (b*c)$
|
||
|
\end{definition}
|
||
|
|
||
|
\begin{definition}{Gruppe}
|
||
|
Sei G eine Menge und $*$ eine Verknüpfung auf G.\\
|
||
|
$(G, *)$ heißt \textbf{Gruppe} $: \Leftrightarrow$
|
||
|
\begin{description}
|
||
|
\item[G1] $\forall a, b, c \in G: (a * b)*c=a*(b*c)$ (assoziativ)
|
||
|
\item[G2] $\exists e \in G \forall a \in G: e * a = a = a * e$ (neutrales Element)
|
||
|
\item[G3] $\forall a \in G \exists a^{-1} \in G: a^{-1}*a=e=a*a^{-1}$ (inverses Element)
|
||
|
\end{description}
|
||
|
\end{definition}
|
||
|
|
||
|
\begin{definition}{abelsche Gruppe}
|
||
|
Sei $(G, *)$ eine Gruppe.
|
||
|
$(G, *)$ heißt \textbf{abelsche Gruppe} $: \Leftrightarrow$
|
||
|
\begin{description}
|
||
|
\item[G4] $\forall a, b \in G: a * b = b * a$ (kommutativ)
|
||
|
\end{description}
|
||
|
\end{definition}
|
||
|
|
||
|
\end{document}
|