2013-06-11 21:51:30 +02:00
|
|
|
\subsection{Aufgabe 3}
|
2013-04-29 19:59:02 +02:00
|
|
|
\begin{frame}{Aufgabe 3}
|
|
|
|
Zeigen Sie: Ein Kreis ist genau dann bipartit, wenn er gerade Länge hat.
|
|
|
|
\end{frame}
|
|
|
|
|
2013-06-11 21:51:30 +02:00
|
|
|
\pgfdeclarelayer{background}
|
|
|
|
\pgfsetlayers{background,main}
|
|
|
|
\begin{frame}{Aufgabe 3 - Lösung}
|
|
|
|
Idee: Knoten abwechselnd färben
|
|
|
|
|
|
|
|
\tikzstyle{selected edge} = [draw,line width=5pt,-,black!50]
|
|
|
|
\begin{center}
|
|
|
|
\adjustbox{max size={\textwidth}{0.8\textheight}}{
|
|
|
|
\begin{tikzpicture}
|
|
|
|
\node[vertex] (a) at (0,0) {};
|
|
|
|
\node[vertex] (b) at (2,0) {};
|
|
|
|
\node[vertex] (c) at (2,2) {};
|
|
|
|
\node[vertex] (d) at (0,2) {};
|
|
|
|
\node[vertex] (e) at (1,4) {};
|
|
|
|
|
|
|
|
\draw (a) -- (b) -- (c) -- (e) -- (d) -- (a);
|
|
|
|
|
|
|
|
\node<2->[vertex, red] (a) at (0,0) {};
|
|
|
|
\node<3->[vertex, blue] (b) at (2,0) {};
|
|
|
|
\node<4->[vertex, red] (c) at (2,2) {};
|
|
|
|
\node<5->[vertex, blue] (e) at (1,4) {};
|
|
|
|
\node<6->[vertex, red] (d) at (0,2) {};
|
|
|
|
|
|
|
|
\begin{pgfonlayer}{background}
|
|
|
|
\path<3->[selected edge] (a.center) edge node {} (b.center);
|
|
|
|
\path<4->[selected edge] (b.center) edge node {} (c.center);
|
|
|
|
\path<5->[selected edge] (c.center) edge node {} (e.center);
|
|
|
|
\path<6->[selected edge] (e.center) edge node {} (d.center);
|
|
|
|
\path<7->[selected edge,lime] (d.center) edge node {} (a.center);
|
|
|
|
\end{pgfonlayer}
|
|
|
|
\end{tikzpicture}
|
|
|
|
}
|
|
|
|
\end{center}
|
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
\subsection{Aufgabe 4}
|
|
|
|
\begin{frame}{Aufgabe 4}
|
|
|
|
Zeigen Sie: Ein Graph $G$ ist genau dann bipartit, wenn er nur Kreise
|
|
|
|
gerade Länge hat.
|
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
\begin{frame}{Aufgabe 4: Lösung, Teil 1}
|
|
|
|
\underline{Vor.:} Sei $G = (E, K)$ ein zus. Graph. \pause
|
|
|
|
|
|
|
|
\underline{Beh.:} $G$ ist bipartit $\Rightarrow G$ hat keine Kreis ungerader Länge \pause
|
|
|
|
|
|
|
|
\underline{Bew.:} durch Widerspruch \pause
|
|
|
|
|
|
|
|
\underline{Annahme:} $G$ hat Kreis ungerader Länge \pause
|
|
|
|
|
|
|
|
$\xRightarrow[]{A.4}$ Ein Subgraph von $G$ ist nicht bipartit \pause
|
|
|
|
|
|
|
|
$\Rightarrow$ Widerspruch zu \enquote{$G$ ist bipartit} \pause
|
|
|
|
|
|
|
|
$\Rightarrow$ $G$ hat keinen Kreis ungerader Länge $\blacksquare$
|
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
\begin{frame}{Aufgabe 4: Lösung, Teil 2}
|
|
|
|
\underline{Vor.:} Sei $G = (E, K)$ ein zus. Graph. \pause
|
|
|
|
|
|
|
|
\underline{Beh.:} $G$ hat keinen Kreis ungerader Länge $\Rightarrow G$ ist bipartit \pause
|
|
|
|
|
|
|
|
\underline{Bew.:} Konstruktiv \pause
|
|
|
|
|
|
|
|
Färbe Graphen mit Breitensuche $\blacksquare$
|
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
\pgfdeclarelayer{background}
|
|
|
|
\pgfsetlayers{background,main}
|
|
|
|
\begin{frame}{Aufgabe 4 - Beispiel}
|
|
|
|
\tikzstyle{selected edge} = [draw,line width=5pt,-,black!50]
|
|
|
|
\begin{center}
|
|
|
|
\adjustbox{max size={\textwidth}{0.8\textheight}}{
|
|
|
|
\begin{tikzpicture}
|
|
|
|
\node[vertex] (a) at (1,1) {};
|
|
|
|
\node[vertex] (b) at (2,0) {};
|
|
|
|
\node[vertex] (c) at (4,0) {};
|
|
|
|
\node[vertex] (d) at (1,2) {};
|
|
|
|
\node[vertex] (e) at (2,2) {};
|
|
|
|
\node[vertex] (f) at (3,2) {};
|
|
|
|
\node[vertex] (g) at (2,4) {};
|
|
|
|
\node[vertex] (h) at (3,3) {};
|
|
|
|
\node[vertex] (i) at (4,2) {};
|
|
|
|
\node[vertex] (j) at (1,3) {};
|
|
|
|
|
|
|
|
\draw (a) -- (b);
|
|
|
|
\draw (a) -- (d);
|
|
|
|
\draw (b) -- (e);
|
|
|
|
\draw (b) -- (c);
|
|
|
|
\draw (c) -- (f);
|
|
|
|
\draw (d) -- (e);
|
|
|
|
\draw (d) -- (j);
|
|
|
|
\draw (e) -- (f);
|
|
|
|
\draw (f) -- (i);
|
|
|
|
\draw (g) -- (j);
|
|
|
|
\draw (g) -- (h);
|
|
|
|
|
|
|
|
\node<2->[vertex, red] (a) at (1,1) {};
|
|
|
|
\node<3->[vertex, blue] (b) at (2,0) {};
|
|
|
|
\node<3->[vertex, blue] (d) at (1,2) {};
|
|
|
|
\node<4->[vertex, red] (c) at (4,0) {};
|
|
|
|
\node<4->[vertex, red] (e) at (2,2) {};
|
|
|
|
\node<4->[vertex, red] (j) at (1,3) {};
|
|
|
|
\node<5->[vertex, blue] (f) at (3,2) {};
|
|
|
|
\node<5->[vertex, blue] (g) at (2,4) {};
|
|
|
|
\node<6->[vertex, red] (h) at (3,3) {};
|
|
|
|
\node<6->[vertex, red] (i) at (4,2) {};
|
|
|
|
|
|
|
|
\begin{pgfonlayer}{background}
|
|
|
|
\path<3->[selected edge] (a.center) edge node {} (b.center);
|
|
|
|
\path<3->[selected edge] (a.center) edge node {} (d.center);
|
|
|
|
\path<4->[selected edge] (b.center) edge node {} (c.center);
|
|
|
|
\path<4->[selected edge] (b.center) edge node {} (e.center);
|
|
|
|
\path<4->[selected edge] (d.center) edge node {} (j.center);
|
|
|
|
\path<4->[selected edge] (d.center) edge node {} (e.center);
|
|
|
|
\path<5->[selected edge] (j.center) edge node {} (g.center);
|
|
|
|
\path<5->[selected edge] (e.center) edge node {} (f.center);
|
|
|
|
\path<5->[selected edge] (c.center) edge node {} (f.center);
|
|
|
|
\path<6->[selected edge] (g.center) edge node {} (h.center);
|
|
|
|
\path<6->[selected edge] (f.center) edge node {} (i.center);
|
|
|
|
\end{pgfonlayer}
|
|
|
|
\end{tikzpicture}
|
|
|
|
}
|
|
|
|
\end{center}
|
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
\subsection{Aufgabe 9}
|
|
|
|
\begin{frame}{Aufgabe 9, Teil 1}
|
|
|
|
Im folgenden sind die ersten drei Graphen $G_1, G_2, G_3$ einer
|
|
|
|
Folge $(G_n)$ aus Graphen abgebildet. Wie sieht $G_4$ aus?
|
|
|
|
|
|
|
|
\begin{gallery}
|
|
|
|
\galleryimage{graphs/triangular-1}
|
|
|
|
\galleryimage{graphs/triangular-2}
|
|
|
|
\galleryimage{graphs/triangular-3}
|
|
|
|
\end{gallery}
|
|
|
|
\end{frame}
|
|
|
|
|
2013-06-12 22:55:14 +02:00
|
|
|
\begin{frame}{Aufgabe 9, Teil 1 (Lösung)}
|
|
|
|
\begin{center}
|
|
|
|
\input{graphs/triangular-4}
|
|
|
|
\end{center}
|
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
\begin{frame}{Aufgabe 9, Teil 1 (Lösung)}
|
|
|
|
\begin{center}
|
|
|
|
\input{graphs/triangular-5}
|
|
|
|
\end{center}
|
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
\begin{frame}{Aufgabe 9, Teil 1 (Lösung)}
|
|
|
|
\begin{center}
|
|
|
|
\input{graphs/triangular-6}
|
|
|
|
\end{center}
|
|
|
|
\end{frame}
|
|
|
|
|
2013-06-11 21:51:30 +02:00
|
|
|
\begin{frame}{Aufgabe 9, Teil 2}
|
2013-06-12 22:55:14 +02:00
|
|
|
Wie viele Ecken und wie viele Kanten hat $G_i$?
|
|
|
|
|
|
|
|
\begin{gallery}
|
|
|
|
\galleryimage{graphs/triangular-1}
|
|
|
|
\galleryimage{graphs/triangular-2}
|
|
|
|
\galleryimage{graphs/triangular-3}
|
|
|
|
\end{gallery}
|
2013-06-11 21:51:30 +02:00
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
\begin{frame}{Aufgabe 9, Teil 2: Antwort}
|
|
|
|
Ecken:
|
|
|
|
|
|
|
|
\[|E_n| = |E_{n-1}| + (n+1) = \sum_{i=1}^{n+1} = \frac{n^2 + 2n+2}{2}\]
|
|
|
|
|
|
|
|
Kanten:
|
|
|
|
|
|
|
|
\begin{align}
|
|
|
|
|K_n| &= |K_{n-1}| + \underbrace{((n+1)-1)+2}_{\text{außen}} + (n-1) \cdot 2\\
|
|
|
|
&= |K_{n-1}| + n+2+2n-2\\
|
|
|
|
&= |K_{n-1}| + 3n\\
|
|
|
|
&= \sum_{i=1}^{n} 3i = 3 \sum_{i=1}^{n} i \\
|
|
|
|
&= 3 \frac{n^2 + n}{2}
|
|
|
|
\end{align}
|
|
|
|
\end{frame}
|
|
|
|
|
2013-06-12 22:55:14 +02:00
|
|
|
\begin{frame}{Aufgabe 9, Teil 3}
|
|
|
|
Gebe $G_i$ formal an.
|
|
|
|
|
|
|
|
\begin{gallery}
|
|
|
|
\galleryimage{graphs/triangular-1}
|
|
|
|
\galleryimage{graphs/triangular-2}
|
|
|
|
\galleryimage{graphs/triangular-3}
|
|
|
|
\end{gallery}
|
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
\begin{frame}{Aufgabe 9, Teil 3 (Lösung)}
|
|
|
|
Gebe $G_n$ formal an.
|
2013-06-11 21:51:30 +02:00
|
|
|
|
2013-06-12 22:55:14 +02:00
|
|
|
\begin{gallery}
|
|
|
|
\galleryimage{graphs/triangular-1}
|
|
|
|
\galleryimage{graphs/triangular-2}
|
|
|
|
\galleryimage{graphs/triangular-3}
|
|
|
|
\end{gallery}
|
|
|
|
|
|
|
|
\begin{align*}
|
|
|
|
E_n &= \Set{e_{x,y} | y \in 1, \dots, n;\; x \in y, \dots, 2 \cdot n - y \text{ mit } x-y \equiv 0 \mod 2}\\
|
|
|
|
K_n &= \Set{\Set{e_{x,y}, e_{i,j}} \in E_n^2 | (x+2=i \land y=j) \lor (x+1=i \land y\pm1=j)}\\
|
|
|
|
G_n &= (E_n, K_n)
|
|
|
|
\end{align*}
|
|
|
|
|
|
|
|
\end{frame}
|
2013-04-29 19:59:02 +02:00
|
|
|
|
2013-06-12 23:08:39 +02:00
|
|
|
\subsection{Bildquellen}
|
|
|
|
\begin{frame}{Bildquellen}
|
2013-04-21 14:47:53 +02:00
|
|
|
\begin{itemize}
|
|
|
|
\item \href{http://commons.wikimedia.org/wiki/File:Konigsberg\_bridges.png}{http://commons.wikimedia.org/wiki/File:Konigsberg\_bridges.png}
|
2013-06-11 21:51:30 +02:00
|
|
|
\item \href{http://commons.wikimedia.org/wiki/File:Unit\_disk\_graph.svg}{http://commons.wikimedia.org/wiki/File:Unit\_disk\_graph.svg}
|
2013-04-21 14:47:53 +02:00
|
|
|
\item \href{http://goo.gl/maps/WnXRh}{Google Maps} (Grafiken \TCop 2013 Cnes/Spot Image, DigitalGlobe)
|
|
|
|
\end{itemize}
|
|
|
|
\end{frame}
|
|
|
|
|
2013-04-29 19:59:02 +02:00
|
|
|
\subsection{Literatur}
|
|
|
|
\begin{frame}{Literatur}
|
|
|
|
\begin{itemize}
|
|
|
|
\item A. Beutelspacher: \textit{Diskrete Mathematik für Einsteiger}, 4. Auflage, ISBN 978-3-8348-1248-3
|
|
|
|
\end{itemize}
|
|
|
|
\end{frame}
|
2013-06-12 23:08:39 +02:00
|
|
|
|
|
|
|
\subsection{Folien, \LaTeX und Material}
|
|
|
|
\begin{frame}{Folien, \LaTeX und Material}
|
|
|
|
Der Foliensatz und die \LaTeX und Ti\textit{k}Z-Quellen sind unter
|
|
|
|
|
|
|
|
\href{https://github.com/MartinThoma/LaTeX-examples/tree/master/presentations/Diskrete-Mathematik}{github.com/MartinThoma/LaTeX-examples/tree/master/presentations/Diskrete-Mathematik}
|
|
|
|
\\
|
|
|
|
|
|
|
|
Kurz-URL:
|
|
|
|
\href{http://goo.gl/uTgam}{goo.gl/uTgam}
|
|
|
|
\end{frame}
|