mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-25 22:38:04 +02:00
59 lines
2.3 KiB
TeX
59 lines
2.3 KiB
TeX
|
\chapter{Linear function}
|
||
|
\section{Defined on $\mdr$}
|
||
|
Let $f(x) = m \cdot x + t$ with $m \in \mdr \setminus \Set{0}$ and
|
||
|
$t \in \mdr$ be a linear function.
|
||
|
|
||
|
\begin{figure}[htp]
|
||
|
\centering
|
||
|
\begin{tikzpicture}
|
||
|
\begin{axis}[
|
||
|
legend pos=north east,
|
||
|
axis x line=middle,
|
||
|
axis y line=middle,
|
||
|
grid = major,
|
||
|
width=0.8\linewidth,
|
||
|
height=8cm,
|
||
|
grid style={dashed, gray!30},
|
||
|
xmin= 0, % start the diagram at this x-coordinate
|
||
|
xmax= 5, % end the diagram at this x-coordinate
|
||
|
ymin= 0, % start the diagram at this y-coordinate
|
||
|
ymax= 3, % end the diagram at this y-coordinate
|
||
|
axis background/.style={fill=white},
|
||
|
xlabel=$x$,
|
||
|
ylabel=$y$,
|
||
|
tick align=outside,
|
||
|
minor tick num=-3,
|
||
|
enlargelimits=true,
|
||
|
tension=0.08]
|
||
|
\addplot[domain=-5:5, thick,samples=50, red] {0.5*x};
|
||
|
\addplot[domain=-5:5, thick,samples=50, blue] {-2*x+6};
|
||
|
\addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)};
|
||
|
\addlegendentry{$f(x)=\frac{1}{2}x$}
|
||
|
\addlegendentry{$g(x)=-2x+6$}
|
||
|
\end{axis}
|
||
|
\end{tikzpicture}
|
||
|
\caption{The shortest distance of $P$ to $f$ can be calculated by using the perpendicular}
|
||
|
\label{fig:linear-min-distance}
|
||
|
\end{figure}
|
||
|
|
||
|
Now you can drop a perpendicular $f_\bot$ through $P$ on $f(x)$. The
|
||
|
slope of $f_\bot$ is $- \frac{1}{m}$ and $t_\bot$ can be calculated:\nobreak
|
||
|
\begin{align}
|
||
|
f_\bot(x) &= - \frac{1}{m} \cdot x + t_\bot\\
|
||
|
\Rightarrow y_P &= - \frac{1}{m} \cdot x_P + t_\bot\\
|
||
|
\Leftrightarrow t_\bot &= y_P + \frac{1}{m} \cdot x_P
|
||
|
\end{align}
|
||
|
|
||
|
The point $(x, f(x))$ where the perpendicular $f_\bot$ crosses $f$
|
||
|
is calculated this way:
|
||
|
\begin{align}
|
||
|
f(x) &= f_\bot(x)\\
|
||
|
\Leftrightarrow m \cdot x + t &= - \frac{1}{m} \cdot x + \left(y_P + \frac{1}{m} \cdot x_P \right)\\
|
||
|
\Leftrightarrow \left (m + \frac{1}{m} \right ) \cdot x &= y_P + \frac{1}{m} \cdot x_P - t\\
|
||
|
\Leftrightarrow x &= \frac{m}{m^2+1} \left ( y_P + \frac{1}{m} \cdot x_P - t \right )
|
||
|
\end{align}
|
||
|
|
||
|
There is only one point with minimal distance. See Figure~\ref{fig:linear-min-distance}.
|
||
|
|
||
|
\section{Defined on a closed interval of $\mdr$}
|