2013-11-05 19:52:56 +01:00
|
|
|
\subsection{Zweifachverbundener Graph}
|
|
|
|
\begin{frame}{Zweifachverbundener Graph}{Biconnected graph}
|
|
|
|
\begin{block}{Zweifachverbundener Graph}
|
|
|
|
Ein Graph $G=(E,V)$ ist genau dann zweifach verbunden (engl. biconnected), wenn er keine Artikulationspunkte enthält.
|
|
|
|
\end{block}
|
|
|
|
Problem: Ist gegebener Graph zweifach verbunden? \\
|
|
|
|
$\Rightarrow$ Suche nach Artikulationspunken!
|
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
\begin{frame}{Beispiel}
|
|
|
|
\begin{figure}
|
|
|
|
\begin{tikzpicture}[scale=1.8, auto,swap]
|
|
|
|
% Draw a 7,11 network
|
|
|
|
% First we draw the vertices
|
|
|
|
\foreach \pos/\name in {{(0,0)/a}, {(0,2)/b}, {(1,2)/c},
|
2015-10-14 14:25:34 +02:00
|
|
|
{(1,0)/d}, {(2,1)/e}, {(3,1)/f},
|
2013-11-05 19:52:56 +01:00
|
|
|
{(4,2)/g}, {(5,2)/h}, {(4,0)/i},
|
|
|
|
{(5,0)/j}}
|
|
|
|
\node[vertex] (\name) at \pos {$\name$};
|
|
|
|
% Connect vertices with edges
|
|
|
|
\foreach \source/ \dest /\pos in {a/b/,b/c/,c/d/,d/a/,
|
|
|
|
d/e/,e/c/,
|
|
|
|
e/f/,
|
|
|
|
f/g/, f/i/,g/c/,
|
|
|
|
g/h/, h/j/, j/i/, i/g/}
|
|
|
|
\path (\source) edge [\pos] node {} (\dest);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{figure}
|
|
|
|
\end{frame}
|