2013-12-21 19:10:35 +01:00
|
|
|
$4 \alpha^3 + 27 \beta^2 \geq 0$:
|
2013-12-21 22:20:30 +01:00
|
|
|
One solution of Equation~\ref{eq:simple-cubic-equation-for-quadratic-distance}
|
2013-12-21 19:10:35 +01:00
|
|
|
is
|
|
|
|
\[x = \frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t}\]
|
|
|
|
|
|
|
|
When you insert this in Equation~\ref{eq:simple-cubic-equation-for-quadratic-distance}
|
|
|
|
you get:\footnote{Remember: $(a-b)^3 = a^3-3 a^2 b+3 a b^2-b^3$}
|
|
|
|
\allowdisplaybreaks
|
|
|
|
\begin{align}
|
|
|
|
0 &\stackrel{!}{=} \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right )^3 + \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
|
|
|
|
&= (\frac{t}{\sqrt[3]{18}})^3
|
|
|
|
- 3 (\frac{t}{\sqrt[3]{18}})^2 \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t}
|
|
|
|
+ 3 (\frac{t}{\sqrt[3]{18}})(\frac{\sqrt[3]{\frac{2}{3}} \alpha }{t})^2
|
|
|
|
- (\frac{\sqrt[3]{\frac{2}{3}} \alpha }{t})^3
|
|
|
|
+ \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
|
|
|
|
&= \frac{t^3}{18}
|
|
|
|
- \frac{3t^2}{\sqrt[3]{18^2}} \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t}
|
|
|
|
+ \frac{3t}{\sqrt[3]{18}} \frac{\sqrt[3]{\frac{4}{9}} \alpha^2 }{t^2}
|
|
|
|
- \frac{\frac{2}{3} \alpha^3 }{t^3}
|
|
|
|
+ \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
|
|
|
|
&= \frac{t^3}{18}
|
|
|
|
- \frac{\sqrt[3]{18} t \alpha}{\sqrt[3]{18^2}}
|
|
|
|
+ \frac{\sqrt[3]{12} \alpha^2}{\sqrt[3]{18} t}
|
|
|
|
- \frac{2 \alpha^3 }{3t^3}
|
|
|
|
+ \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
|
|
|
|
&= \frac{t^3}{18}
|
|
|
|
- \frac{t \alpha}{\sqrt[3]{18}}
|
|
|
|
\color{red}+ \frac{\sqrt[3]{2} \alpha^2}{\sqrt[3]{3} t} \color{black}
|
|
|
|
- \frac{2 \alpha^3 }{3 t^3}
|
|
|
|
+ \color{red}\alpha \color{black} \left (\frac{t}{\sqrt[3]{18}} \color{red}- \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \color{black}\right )
|
|
|
|
+ \beta\\
|
|
|
|
&= \frac{t^3}{18} \color{blue}- \frac{t \alpha}{\sqrt[3]{18}} \color{black}
|
|
|
|
- \frac{2 \alpha^3 }{3 t^3}
|
|
|
|
\color{blue}+ \frac{\alpha t}{\sqrt[3]{18}} \color{black}
|
|
|
|
+ \beta\\
|
|
|
|
&= \frac{t^3}{18} - \frac{2 \alpha^3 }{3 t^3} + \beta\\
|
|
|
|
&= \frac{t^6 - 12 \alpha^3 + \beta 18 t^3}{18t^3}
|
|
|
|
\end{align}
|
|
|
|
|
|
|
|
Now only go on calculating with the numerator. Start with resubstituting
|
|
|
|
$t$:
|
|
|
|
\begin{align}
|
|
|
|
0 &= (\sqrt{3 \cdot (4 \alpha^3 + 27 \beta^2)} -9\beta)^2 - 12 \alpha^3 + \beta 18 (\sqrt{3 \cdot (4 \alpha^3 + 27 \beta^2)} -9\beta)\\
|
|
|
|
&= (\sqrt{3 \cdot (4 \alpha^3 + 27 \beta^2)})^2 +(9\beta)^2 - 12 \alpha^3 -(2 \cdot 9)\cdot 9\beta^2\\
|
|
|
|
&= 3 \cdot (4 \alpha^3 + 27 \beta^2) -81 \beta^2 - 12 \alpha^3\\
|
|
|
|
&= 0
|
|
|
|
\end{align}
|