2
0
Fork 0
mirror of https://github.com/MartinThoma/LaTeX-examples.git synced 2025-04-26 06:48:04 +02:00
LaTeX-examples/source-code/Pseudocode/Cholesky-Zerlegung/Cholesky-Zerlegung.tex

39 lines
1.5 KiB
TeX
Raw Normal View History

2013-05-31 09:51:38 +02:00
\documentclass{article}
\usepackage[pdftex,active,tightpage]{preview}
\setlength\PreviewBorder{2mm}
\usepackage[utf8]{inputenc} % this is needed for umlauts
\usepackage[ngerman]{babel} % this is needed for umlauts
\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
\usepackage{amssymb,amsmath,amsfonts} % nice math rendering
\usepackage{braket} % needed for \Set
\usepackage{algorithm,algpseudocode}
\begin{document}
\begin{preview}
Sei $n \in \mathbb{N}_{\geq 1}$, $A \in \mathbb{R}^{n \times n}$ und
2013-05-31 09:51:38 +02:00
positiv definit sowie symmetrisch.
Dann existiert eine Zerlegung $A = L \cdot L^T$, wobei $L$ eine
untere Dreiecksmatrix ist. Diese wird von folgendem Algorithmus
2013-05-31 09:51:38 +02:00
berechnet:
\begin{algorithm}[H]
\begin{algorithmic}
\Function{Cholesky}{$A \in \mathbb{R}^{n \times n}$}
\State $L = \Set{0} \in \mathbb{R}^{n \times n}$ \Comment{Initialisiere $L$}
\For{($k=1$; $\;k \leq n$; $\;k$++)}
\State $L_{k,k} = \sqrt{A_{k,k} - \sum_{i=1}^{k-1} L_{k,i}^2}$
\For{($i=k+1$; $\;i \leq n$; $\;i$++)}
\State $L_{i,k} = \frac{A_{i,k} - \sum_{j=1}^{k-1} L_{i,j} \cdot L_{k,j}}{L_{k,k}}$
\EndFor
\EndFor
\State \Return $L$
\EndFunction
\end{algorithmic}
\caption{Cholesky-Zerlegung}
\label{alg:seq1}
\end{algorithm}
\end{preview}
\end{document}