2
0
Fork 0
mirror of https://github.com/MartinThoma/LaTeX-examples.git synced 2025-04-25 14:28:05 +02:00
LaTeX-examples/documents/math-minimal-distance-to-cubic-function/math-minimal-distance-to-cubic-function.tex

572 lines
25 KiB
TeX
Raw Normal View History

2013-11-05 20:30:34 +01:00
\documentclass[a4paper]{scrartcl}
\usepackage{amssymb, amsmath} % needed for math
2013-11-13 08:50:04 +01:00
\usepackage{mathtools} % \xRightarrow
2013-11-05 20:30:34 +01:00
\usepackage[utf8]{inputenc} % this is needed for umlauts
\usepackage[english]{babel} % this is needed for umlauts
\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
\usepackage[margin=2.5cm]{geometry} %layout
\usepackage{hyperref} % links im text
\usepackage{braket} % needed for \Set
\usepackage{parskip}
\usepackage[colorinlistoftodos]{todonotes}
\usepackage{pgfplots}
\pgfplotsset{compat=1.7,compat/path replacement=1.5.1}
\usepackage{tikz}
2013-11-22 23:23:03 +01:00
\usepackage[framed,amsmath,thmmarks,hyperref]{ntheorem}
\usepackage{framed}
2013-12-05 23:27:17 +01:00
\usepackage{nicefrac}
2013-12-06 12:20:49 +01:00
\usepackage{siunitx}
2013-11-22 23:23:03 +01:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Define theorems %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\theoremstyle{break}
\setlength\theoremindent{0.7cm}
\theoremheaderfont{\kern-0.7cm\normalfont\bfseries}
\theorembodyfont{\normalfont} % nicht mehr kursiv
\def\mdr{\ensuremath{\mathbb{R}}}
2013-12-05 23:27:17 +01:00
\renewcommand{\qed}{\hfill\blacksquare}
2013-11-23 01:19:21 +01:00
\newframedtheorem{theorem}{Theorem}
2013-11-22 23:23:03 +01:00
\newframedtheorem{lemma}[theorem]{Lemma}
\newtheorem{plaindefinition}{Definition}
\newenvironment{definition}{\begin{plaindefinition}}{\end{plaindefinition}}
\newenvironment{definition*}{\begin{plaindefinition*}}{\end{plaindefinition*}}
\newtheorem{example}{Example}
\theoremstyle{nonumberplain}
\newtheorem{proof}{Proof:}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2013-11-05 20:30:34 +01:00
\title{Minimal distance to a cubic function}
\author{Martin Thoma}
\hypersetup{
pdfauthor = {Martin Thoma},
pdfkeywords = {},
pdftitle = {Minimal Distance}
}
\def\mdr{\ensuremath{\mathbb{R}}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Begin document %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\maketitle
\begin{abstract}
2013-11-25 08:13:14 +01:00
When you want to develop a selfdriving car, you have to plan which path
it should take. A reasonable choice for the representation of
paths are cubic splines. You also have to be able to calculate
how to steer to get or to remain on a path. A way to do this
2013-11-22 21:40:15 +01:00
is applying the \href{https://en.wikipedia.org/wiki/PID_algorithm}{PID algorithm}.
2013-11-25 08:13:14 +01:00
This algorithm needs to know the signed current error. So you need to
be able to get the minimal distance of a point to a cubic spline combined with the direction (left or right).
2013-11-22 21:40:15 +01:00
As you need to get the signed error (and one steering direction might
be prefered), it is not only necessary to
2013-12-11 18:14:12 +01:00
get the minimal absolute distance, but might also help to get all points
2013-11-22 21:40:15 +01:00
on the spline with minimal distance.
In this paper I want to discuss how to find all points on a cubic
2013-11-05 20:30:34 +01:00
function with minimal distance to a given point.
2013-11-22 21:40:15 +01:00
As other representations of paths might be easier to understand and
to implement, I will also cover the problem of finding the minimal
distance of a point to a polynomial of degree 0, 1 and 2.
2013-11-05 20:30:34 +01:00
\end{abstract}
\section{Description of the Problem}
Let $f: \mdr \rightarrow \mdr$ be a polynomial function and $P \in \mdr^2$
2013-11-25 08:13:14 +01:00
be a point. Let $d_{P,f}: \mdr \rightarrow \mdr_0^+$
2013-12-11 18:14:12 +01:00
be the Euklidean distance of a point $P$ and a point $\left (x, f(x) \right )$
on the graph of $f$:
2013-11-22 23:23:03 +01:00
\[d_{P,f} (x) := \sqrt{(x_P - x)^2 + (y_P - f(x))^2}\]
2013-11-05 20:30:34 +01:00
2013-12-11 18:14:12 +01:00
Now there is finite set $M = \Set{x_1, \dots, x_n}$ of minima for given $f$ and $P$:
\[M = \Set{x \in \mdr | d_{P,f}(x) = \min_{\overline{x} \in \mdr} d_{P,f}(\overline{x})}\]
2013-11-05 20:30:34 +01:00
2013-11-22 23:23:03 +01:00
But minimizing $d_{P,f}$ is the same as minimizing $d_{P,f}^2$:
\begin{align}
d_{P,f}(x)^2 &= \sqrt{(x_P - x)^2 + (y_P - f(x))^2}^2\\
&= x_p^2 - 2x_p x + x^2 + y_p^2 - 2y_p f(x) + f(x)^2
\end{align}
2013-11-22 21:40:15 +01:00
2013-12-11 18:14:12 +01:00
\begin{theorem}[Fermat's theorem about stationary points]\label{thm:required-extremum-property}
Let $x_0$ be a local extremum of a differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$.
Then: $f'(x_0) = 0$.
2013-11-22 23:23:03 +01:00
\end{theorem}
\clearpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Constant functions %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2013-11-05 20:30:34 +01:00
\section{Minimal distance to a constant function}
2013-11-22 21:40:15 +01:00
Let $f(x) = c$ with $c \in \mdr$ be a constant function.
2013-11-05 20:30:34 +01:00
2013-11-05 20:47:41 +01:00
\begin{figure}[htp]
\centering
\begin{tikzpicture}
\begin{axis}[
legend pos=north west,
axis x line=middle,
axis y line=middle,
grid = major,
width=0.8\linewidth,
height=8cm,
grid style={dashed, gray!30},
xmin=-5, % start the diagram at this x-coordinate
xmax= 5, % end the diagram at this x-coordinate
ymin= 0, % start the diagram at this y-coordinate
ymax= 3, % end the diagram at this y-coordinate
axis background/.style={fill=white},
xlabel=$x$,
ylabel=$y$,
tick align=outside,
minor tick num=-3,
enlargelimits=true,
tension=0.08]
\addplot[domain=-5:5, thick,samples=50, red] {1};
\addplot[domain=-5:5, thick,samples=50, green] {2};
2013-12-11 18:14:12 +01:00
\addplot[domain=-5:5, thick,samples=50, blue, densely dotted] {3};
2013-11-05 20:47:41 +01:00
\addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)};
2013-11-22 21:40:15 +01:00
\addplot[blue, mark = *, nodes near coords=$P_{h,\text{min}}$,every node near coord/.style={anchor=225}] coordinates {(2, 3)};
\addplot[green, mark = x, nodes near coords=$P_{g,\text{min}}$,every node near coord/.style={anchor=120}] coordinates {(2, 2)};
\addplot[red, mark = *, nodes near coords=$P_{f,\text{min}}$,every node near coord/.style={anchor=225}] coordinates {(2, 1)};
2013-11-05 20:47:41 +01:00
\draw[thick, dashed] (axis cs:2,0) -- (axis cs:2,3);
\addlegendentry{$f(x)=1$}
\addlegendentry{$g(x)=2$}
\addlegendentry{$h(x)=3$}
\end{axis}
\end{tikzpicture}
2013-11-22 23:23:03 +01:00
\caption{Three constant functions and their points with minimal distance}
2013-11-22 21:40:15 +01:00
\label{fig:constant-min-distance}
2013-11-05 20:47:41 +01:00
\end{figure}
2013-11-05 20:30:34 +01:00
Then $(x_P,f(x_P))$ has
minimal distance to $P$. Every other point has higher distance.
2013-11-22 21:40:15 +01:00
See Figure~\ref{fig:constant-min-distance}.
2013-11-05 20:30:34 +01:00
2013-11-22 23:23:03 +01:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Linear functions %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2013-11-05 20:30:34 +01:00
\section{Minimal distance to a linear function}
Let $f(x) = m \cdot x + t$ with $m \in \mdr \setminus \Set{0}$ and
2013-11-22 21:40:15 +01:00
$t \in \mdr$ be a linear function.
2013-11-05 20:30:34 +01:00
2013-11-05 20:47:41 +01:00
\begin{figure}[htp]
\centering
\begin{tikzpicture}
\begin{axis}[
legend pos=north east,
axis x line=middle,
axis y line=middle,
grid = major,
width=0.8\linewidth,
height=8cm,
grid style={dashed, gray!30},
xmin= 0, % start the diagram at this x-coordinate
xmax= 5, % end the diagram at this x-coordinate
ymin= 0, % start the diagram at this y-coordinate
ymax= 3, % end the diagram at this y-coordinate
axis background/.style={fill=white},
xlabel=$x$,
ylabel=$y$,
tick align=outside,
minor tick num=-3,
enlargelimits=true,
tension=0.08]
\addplot[domain=-5:5, thick,samples=50, red] {0.5*x};
\addplot[domain=-5:5, thick,samples=50, blue] {-2*x+6};
\addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)};
\addlegendentry{$f(x)=\frac{1}{2}x$}
\addlegendentry{$g(x)=-2x+6$}
\end{axis}
\end{tikzpicture}
\caption{The shortest distance of $P$ to $f$ can be calculated by using the perpendicular}
2013-11-22 21:40:15 +01:00
\label{fig:linear-min-distance}
2013-11-05 20:47:41 +01:00
\end{figure}
2013-11-05 20:30:34 +01:00
2013-12-11 18:14:12 +01:00
Now you can drop a perpendicular $f_\bot$ through $P$ on $f(x)$. The
slope of $f_\bot$ is $- \frac{1}{m}$ and $t_\bot$ can be calculated:\nobreak
2013-11-05 20:30:34 +01:00
\begin{align}
f_\bot(x) &= - \frac{1}{m} \cdot x + t_\bot\\
\Rightarrow y_P &= - \frac{1}{m} \cdot x_P + t_\bot\\
2013-11-22 21:40:15 +01:00
\Leftrightarrow t_\bot &= y_P + \frac{1}{m} \cdot x_P
\end{align}
2013-12-11 18:14:12 +01:00
The point $(x, f(x))$ where the perpendicular $f_\bot$ crosses $f$
is calculated this way:
2013-11-22 21:40:15 +01:00
\begin{align}
2013-11-05 20:30:34 +01:00
f(x) &= f_\bot(x)\\
\Leftrightarrow m \cdot x + t &= - \frac{1}{m} \cdot x + \left(y_P + \frac{1}{m} \cdot x_P \right)\\
\Leftrightarrow \left (m + \frac{1}{m} \right ) \cdot x &= y_P + \frac{1}{m} \cdot x_P - t\\
\Leftrightarrow x &= \frac{m}{m^2+1} \left ( y_P + \frac{1}{m} \cdot x_P - t \right )
\end{align}
2013-11-22 21:40:15 +01:00
There is only one point with minimal distance. See Figure~\ref{fig:linear-min-distance}.
2013-11-05 20:47:41 +01:00
\clearpage
2013-11-22 21:40:15 +01:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Quadratic functions %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2013-11-05 20:30:34 +01:00
\section{Minimal distance to a quadratic function}
Let $f(x) = a \cdot x^2 + b \cdot x + c$ with $a \in \mdr \setminus \Set{0}$ and
2013-11-22 21:40:15 +01:00
$b, c \in \mdr$ be a quadratic function.
2013-11-05 20:30:34 +01:00
\begin{figure}[htp]
\centering
\begin{tikzpicture}
\begin{axis}[
legend pos=north west,
axis x line=middle,
axis y line=middle,
grid = major,
width=0.8\linewidth,
height=8cm,
grid style={dashed, gray!30},
2013-12-11 18:14:12 +01:00
xmin=-3, % start the diagram at this x-coordinate
2013-11-05 20:30:34 +01:00
xmax= 3, % end the diagram at this x-coordinate
2013-12-11 18:14:12 +01:00
ymin=-0.25, % start the diagram at this y-coordinate
ymax= 9, % end the diagram at this y-coordinate
2013-11-05 20:30:34 +01:00
axis background/.style={fill=white},
xlabel=$x$,
ylabel=$y$,
tick align=outside,
minor tick num=-3,
enlargelimits=true,
tension=0.08]
2013-12-11 18:14:12 +01:00
\addplot[domain=-3:3, thick,samples=50, red] {0.5*x*x};
\addplot[domain=-3:3, thick,samples=50, green] { x*x};
\addplot[domain=-3:3, thick,samples=50, blue] { x*x + x};
\addplot[domain=-3:3, thick,samples=50, orange,dotted] { x*x + 2*x};
\addplot[domain=-3:3, thick,samples=50, black,dashed] {-x*x + 6};
2013-11-05 20:30:34 +01:00
\addlegendentry{$f_1(x)=\frac{1}{2}x^2$}
\addlegendentry{$f_2(x)=x^2$}
\addlegendentry{$f_3(x)=x^2+x$}
\addlegendentry{$f_4(x)=x^2+2x$}
\addlegendentry{$f_5(x)=-x^2+6$}
\end{axis}
\end{tikzpicture}
\caption{Quadratic functions}
\end{figure}
2013-11-22 23:23:03 +01:00
\subsection{Calculate points with minimal distance}
In this case, $d_{P,f}^2$ is polynomial of degree 4.
We use Theorem~\ref{thm:required-extremum-property}:\nobreak
2013-11-22 23:23:03 +01:00
\begin{align}
0 &\overset{!}{=} (d_{P,f}^2)'\\
&= -2 x_p + 2x -2y_p f'(x) + \left (f(x)^2 \right )'\\
&= -2 x_p + 2x -2y_p f'(x) + 2 f(x) \cdot f'(x) \rlap{\hspace*{3em}(chain rule)}\label{eq:minimizingFirstDerivative}\\
2013-11-25 08:13:14 +01:00
\Leftrightarrow 0 &\overset{!}{=} -x_p + x -y_p f'(x) + f(x) \cdot f'(x) \rlap{\hspace*{3em}(divide by 2)}\label{eq:minimizingFirstDerivative}\\
&= -x_p + x -y_p (2ax+b) + (ax^2+bx+c)(2ax+b)\\
&= -x_p + x -y_p \cdot 2ax- y_p b + (2 a^2 x^3+2 a b x^2+2 a c x+ab x^2+b^2 x+bc)\\
&= -x_p + x -2y_p ax- y_p b + (2a^2 x^3 + 3 ab x^2 + 2acx + b^2 x + bc)\\
2013-12-05 23:27:17 +01:00
&= 2a^2 x^3 + 3 ab x^2 + (1 -2y_p a+ 2ac + b^2)x +(bc-by_p-x_p)\label{eq:quadratic-derivative-eq-0}
2013-11-22 23:23:03 +01:00
\end{align}
This is an algebraic equation of degree 3.
There can be up to 3 solutions in such an equation. Those solutions
can be found with a closed formula.
2013-11-22 23:23:03 +01:00
\todo[inline]{Where are those closed formulas?}
2013-11-22 23:23:03 +01:00
\begin{example}
Let $a = 1, b = 0, c= 1, x_p= 0, y_p = 1$.
So $f(x) = x^2 + 1$ and $P(0, 1)$.
2013-11-22 23:23:03 +01:00
\begin{align}
0 &\stackrel{!}{=} 4 x^3 - 2x\\
&=2x(2x^2 - 1)\\
\Rightarrow x_1 &= 0 \;\;\; x_{2,3} = \pm \frac{1}{\sqrt{2}}
\end{align}
As you can easily verify, only $x_1$ is a minimum of $d_{P,f}$.
\end{example}
2013-11-22 23:23:03 +01:00
2013-11-05 20:30:34 +01:00
\subsection{Number of points with minimal distance}
\begin{theorem}
A point $P$ has either one or two points on the graph of a
quadratic function $f$ that are closest to $P$.
\end{theorem}
In the following, I will do some transformations with $f = f_0$ and
$P = P_0$ .
2013-11-05 20:30:34 +01:00
Moving $f_0$ and $P_0$ simultaneously in $x$ or $y$ direction does
not change the minimum distance. Furthermore, we can find the
points with minimum distance on the moved situation and calculate
the minimum points in the original situation.
2013-11-05 20:30:34 +01:00
First of all, we move $f_0$ and $P_0$ by $\frac{b}{2a}$ in $x$ direction, so
2013-12-05 23:27:17 +01:00
\[f_1(x) = ax^2 - \frac{b^2}{4a} + c \;\;\;\text{ and }\;\;\; P_1 = \left (x_p+\frac{b}{2a},\;\; y_p \right )\]
2013-12-11 18:14:12 +01:00
Because:\footnote{The idea why you subtract $\frac{b}{2a}$ within
$f$ is that when you subtract something from $x$ before applying
$f$ it takes more time ($x$ needs to be bigger) to get to the same
situation. So to move the whole graph by $1$ to the left whe have
to add $+1$.}
2013-12-05 23:27:17 +01:00
\begin{align}
f(x-\nicefrac{b}{2a}) &= a (x-\nicefrac{b}{2a})^2 + b (x-\nicefrac{b}{2a}) + c\\
&= a (x^2 - \nicefrac{b}{a} x + \nicefrac{b^2}{4a^2}) + bx - \nicefrac{b^2}{2a} + c\\
&= ax^2 - bx + \nicefrac{b^2}{4a} + bx - \nicefrac{b^2}{2a} + c\\
&= ax^2 -\nicefrac{b^2}{4a} + c
\end{align}
Then move $f_1$ and $P_1$ by $\frac{b^2}{4a}-c$ in $y$ direction. You get:
2013-12-11 18:14:12 +01:00
\[f_2(x) = ax^2\;\;\;\text{ and }\;\;\; P_2 = \Big (\underbrace{x_P+\frac{b}{2a}}_{=: z},\;\; \underbrace{y_P+\frac{b^2}{4a}-c}_{=: w} \Big )\]
2013-12-05 23:27:17 +01:00
2013-12-06 12:20:49 +01:00
\textbf{Case 1:} As $f_2(x) = ax^2$ is symmetric to the $y$ axis, only points
$P = (0, w)$ could possilby have three minima.
2013-12-05 23:27:17 +01:00
Then compute:
\begin{align}
2013-12-11 18:14:12 +01:00
d_{P,{f_2}}(x) &= \sqrt{(x-0)^2 + (f_2(x)-w)^2}\\
&= \sqrt{x^2 + (ax^2-w)^2}\\
&= \sqrt{x^2 + a^2 x^4-2aw x^2+w^2}\\
&= \sqrt{a^2 x^4 + (1-2aw) x^2 + w^2}\\
&= \sqrt{\left (a^2 x^2 + \frac{1-2 a w}{2} \right )^2 + w^2 - (1-2 a w)^2}\\
2013-12-11 18:14:12 +01:00
&= \sqrt{\left (a^2 x^2 + \nicefrac{1}{2}-a w \right )^2 + \big (w^2 - (1-2 a w)^2 \big)}
2013-12-05 23:27:17 +01:00
\end{align}
The term
\[a^2 x^2 + (\nicefrac{1}{2}-a w)\]
should get as close to $0$ as possilbe when we want to minimize
$d_{P,{f_2}}$. For $w \leq \nicefrac{1}{2a}$ you only have $x = 0$ as a minimum.
For all other points $P = (0, w)$, there are exactly two minima $x_{1,2} = \pm \sqrt{aw - \nicefrac{1}{2}}$.
2013-12-06 12:20:49 +01:00
\textbf{Case 2:} $P = (z, w)$ is not on the symmetry axis, so $z \neq 0$. Then you compute:
\begin{align}
d_{P,{f_2}}(x) &= \sqrt{(x-z)^2 + (f(x)-w)^2}\\
2013-12-11 18:14:12 +01:00
&= \sqrt{(x^2 - 2zx + z^2) + ((ax^2)^2 - 2 awx^2 + w^2)}\\
&= \sqrt{a^2x^4 + (1- 2 aw)x^2 +(- 2z)x + z^2 + w^2}\\
0 &\stackrel{!}{=} \Big(\big(d_{P, {f_2}}(x)\big)^2\Big)' \\
2013-12-06 12:20:49 +01:00
&= 4a^2x^3 + 2(1- 2 aw)x +(- 2z)\\
&= 2 \left (2a^2x^2 + (1- 2 aw) \right )x - 2z\\
2013-12-11 18:14:12 +01:00
\Leftrightarrow 0 &\stackrel{!}{=} (2a^2x^2 + (1- 2 aw)) x - z\\
&= 2 a^2 x^3 + (1- 2 aw) x - z\\
\Leftrightarrow 0 &\stackrel{!}{=} x^3 + \underbrace{\frac{(1- 2 aw)}{2 a^2}}_{=: \alpha} x + \underbrace{\frac{-z}{2 a^2}}_{=: \beta}\\
&= x^3 + \alpha x + \beta\label{eq:simple-cubic-equation-for-quadratic-distance}
2013-12-06 12:20:49 +01:00
\end{align}
2013-12-11 18:14:12 +01:00
The solution of Equation~\ref{eq:simple-cubic-equation-for-quadratic-distance}
is
2013-12-11 18:45:47 +01:00
\[t := \sqrt[3]{\sqrt{3 \cdot (4 \alpha^3 + 27 \beta^2)} -9\beta}\]
\[x = \frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t}\]
2013-12-06 12:20:49 +01:00
2013-12-11 18:45:47 +01:00
When you insert is in Equation~\ref{eq:simple-cubic-equation-for-quadratic-distance}
you get:
\begin{align}
0 &= \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right )^3 + \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
&= (\frac{t}{\sqrt[3]{18}})^3 - 3 (\frac{t}{\sqrt[3]{18}})^2 \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} + 3 (\frac{t}{\sqrt[3]{18}})(\frac{\sqrt[3]{\frac{2}{3}} \alpha }{t})^2 + (\frac{\sqrt[3]{\frac{2}{3}} \alpha }{t})^3 + \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
&= \frac{t^3}{18} - \frac{3t^2}{\sqrt[3]{18^2}} \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} + \frac{3t}{\sqrt[3]{18}} \frac{\sqrt[3]{\frac{4}{9}} \alpha^2 }{t^2} + \frac{\frac{2}{3} \alpha^3 }{t^3} + \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
&= \frac{t^3}{18} - \frac{\sqrt[3]{18} t \alpha}{\sqrt[3]{18^2}} + \frac{\sqrt[3]{12} \alpha^2}{\sqrt[3]{18} t} + \frac{\frac{2}{3} \alpha^3 }{t^3} + \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
&= \frac{t^3}{18} - \frac{t \alpha}{\sqrt[3]{18}} + \frac{\sqrt[3]{2} \alpha^2}{\sqrt[3]{3} t} + \frac{\frac{2}{3} \alpha^3 }{t^3} + \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
&= \frac{t^3}{18} - \frac{t \alpha}{\sqrt[3]{18}} + \frac{\frac{2}{3} \alpha^3 }{t^3} + \frac{\alpha t}{\sqrt[3]{18}} + \beta\\
&= \frac{t^3}{18} + \frac{\frac{2}{3} \alpha^3 }{t^3} + \beta\\
\end{align}
2013-12-11 18:14:12 +01:00
\todo[inline]{verify this solution}
2013-12-06 12:20:49 +01:00
\goodbreak
So the solution is given by
\begin{align*}
2013-12-06 00:37:04 +01:00
x_S &:= - \frac{b}{2a} \;\;\;\;\; \text{(the symmetry axis)}\\
\underset{x\in\mdr}{\arg \min d_{P,f}(x)} &= \begin{cases}
x_1 = +\sqrt{a (y_p + \frac{b^2}{4a} - c) - \frac{1}{2}} + x_S \text{ and } &\text{if } x_P = x_S \text{ and } y_p + \frac{b^2}{4a} - c > \frac{1}{2a} \\
x_2 = -\sqrt{a (y_p + \frac{b^2}{4a} - c) - \frac{1}{2}} + x_S\\
x_1 = x_S &\text{if } x_P = x_S \text{ and } y_p + \frac{b^2}{4a} - c \leq \frac{1}{2a} \\
x_1 = todo &\text{if } x_P \neq x_S
\end{cases}
\end{align*}
2013-12-05 23:27:17 +01:00
\clearpage
2013-11-22 21:40:15 +01:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Cubic %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2013-11-05 20:30:34 +01:00
\section{Minimal distance to a cubic function}
2013-11-22 21:40:15 +01:00
Let $f(x) = a \cdot x^3 + b \cdot x^2 + c \cdot x + d$ be a cubic function
with $a \in \mdr \setminus \Set{0}$ and
2013-11-05 20:47:41 +01:00
$b, c, d \in \mdr$ be a function.
\begin{figure}[htp]
\centering
\begin{tikzpicture}
\begin{axis}[
legend pos=south east,
axis x line=middle,
axis y line=middle,
grid = major,
width=0.8\linewidth,
height=8cm,
grid style={dashed, gray!30},
2013-12-11 18:14:12 +01:00
xmin=-3, % start the diagram at this x-coordinate
xmax= 3, % end the diagram at this x-coordinate
ymin=-3, % start the diagram at this y-coordinate
ymax= 3, % end the diagram at this y-coordinate
axis background/.style={fill=white},
xlabel=$x$,
ylabel=$y$,
tick align=outside,
minor tick num=-3,
enlargelimits=true,
tension=0.08]
\addplot[domain=-3:3, thick,samples=50, red] {x*x*x};
\addplot[domain=-3:3, thick,samples=50, green] {x*x*x+x*x};
\addplot[domain=-3:3, thick,samples=50, blue] {x*x*x+2*x*x};
\addplot[domain=-3:3, thick,samples=50, orange] {x*x*x+x};
\addlegendentry{$f_1(x)=x^3$}
\addlegendentry{$f_2(x)=x^3 + x^2$}
\addlegendentry{$f_2(x)=x^3 + 2 \cdot x^2$}
\addlegendentry{$f_1(x)=x^3 + x$}
\end{axis}
\end{tikzpicture}
\caption{Cubic functions}
\end{figure}
2013-11-05 20:47:41 +01:00
%
%\subsection{Special points}
%\todo[inline]{Write this}
%
%\subsection{Voronoi}
%
%For $b^2 \geq 3ac$
%
%\todo[inline]{Write this}
2013-11-05 20:47:41 +01:00
2013-11-05 20:30:34 +01:00
\subsection{Calculate points with minimal distance}
2013-12-11 18:14:12 +01:00
\begin{theorem}
There cannot be an algebraic solution to the problem of finding
a closest point $(x, f(x))$ to a given point $P$ when $f$ is
a polynomial function of degree $3$ or higher.
\end{theorem}
\begin{proof}
2013-12-11 18:24:52 +01:00
Suppose you could solve the closest point problem for arbitrary
cubic functions $f = ax^3 + bx^2 + cx + d$ and arbitrary points $P = (x_P, y_P)$.
Then you could solve the following problem for $x$:
\begin{align}
0 &\stackrel{!}{=} \left ((d_{P,f}(x))^2 \right )'
&=-2 x_p + 2x -2y_p(f(x))' + (f(x)^2)'\\
&= 2 f(x) \cdot f'(x) - 2 y_p f'(x) + 2x - 2 x_p\\
&= f(x) \cdot f'(x) - y_p f'(x) + x - x_p\\
&= \underbrace{f'(x) \cdot \left (f(x) - y_p \right )}_{\text{Polynomial of degree 5}} + x - x_p
\end{align}
General algebraic equations of degree 5 don't have a solution formula.\footnote{TODO: Quelle}
Although here seems to be more structure, the resulting algebraic
equation can be almost any polynomial of degree 5:\footnote{Thanks to Peter Košinár on \href{http://math.stackexchange.com/a/584814/6876}{math.stackexchange.com} for this one}
\begin{align}
0 &\stackrel{!}{=} f'(x) \cdot \left (f(x) - y_p \right ) + (x - x_p)\\
&= \underbrace{3 a^2}_{= \tilde{a}} x^5 + \underbrace{5ab}_{\tilde{b}}x^4 + \underbrace{2(2ac + b^2 )}_{=: \tilde{c}}x^3 &+& \underbrace{3(ad+bc-ay_p)}_{\tilde{d}} x^2 \\
& &+& \underbrace{(2 b d+c^2+1-2 b y_p)}_{=: \tilde{e}}x+\underbrace{c d-c y_p-x_p}_{=: \tilde{f}}\\
0 &\stackrel{!}{=} \tilde{a}x^5 + \tilde{b}x^4 + \tilde{c}x^3 + \tilde{d}x^2 + \tilde{e}x + \tilde{f}
\end{align}
\begin{enumerate}
\item For any coefficient $\tilde{a} \in \mdr_{> 0}$ of $x^5$ we can choose $a$ such that we get $\tilde{a}$.
\item For any coefficient $\tilde{b} \in \mdr \setminus \Set{0}$ of $x^4$ we can choose $b$ such that we get $\tilde{b}$.
\item With $c$, we can get any value of $\tilde{c} \in \mdr$.
\item With $d$, we can get any value of $\tilde{d} \in \mdr$.
\item With $y_p$, we can get any value of $\tilde{e} \in \mdr$.
\item With $x_p$, we can get any value of $\tilde{f} \in \mdr$.
\end{enumerate}
The first restriction guaratees that we have a polynomial of
degree 5. The second one is necessary, to get a high range of
$\tilde{e}$.
This means, that there is no solution formula for the problem of
finding the closest points on a cubic function to a given point,
because if there was one, you could use this formula for finding
roots of polynomials of degree 5. $\qed$
2013-12-11 18:14:12 +01:00
\end{proof}
2013-11-23 01:23:27 +01:00
2013-12-06 12:20:49 +01:00
\subsection{Another approach}
Just like we moved the function $f$ and the point to get in a
nicer situation, we can apply this approach for cubic functions.
\begin{figure}[htp]
\centering
\begin{tikzpicture}
\begin{axis}[
legend pos=south east,
axis x line=middle,
axis y line=middle,
grid = major,
width=0.8\linewidth,
height=8cm,
grid style={dashed, gray!30},
2013-12-11 18:14:12 +01:00
xmin=-3, % start the diagram at this x-coordinate
xmax= 3, % end the diagram at this x-coordinate
ymin=-3, % start the diagram at this y-coordinate
ymax= 3, % end the diagram at this y-coordinate
2013-12-06 12:20:49 +01:00
axis background/.style={fill=white},
xlabel=$x$,
ylabel=$y$,
tick align=outside,
minor tick num=-3,
enlargelimits=true,
tension=0.08]
\addplot[domain=-3:3, thick,samples=50, red] {x*x*x};
\addplot[domain=-3:3, thick,samples=50, green] {x*x*x+x};
\addplot[domain=-3:3, thick,samples=50, orange] {x*x*x-x};
\addplot[domain=-3:3, thick,samples=50, blue, dotted] {x*x*x+2*x};
\addplot[domain=-3:3, thick,samples=50, lime, dashed] {x*x*x+3*x};
\addlegendentry{$f_1(x)=x^3$}
\addlegendentry{$f_2(x)=x^3 + x$}
\addlegendentry{$f_1(x)=x^3 - x$}
\addlegendentry{$f_2(x)=x^3 + 2 \cdot x$}
\addlegendentry{$f_2(x)=x^3 + 3 \cdot x$}
\end{axis}
\end{tikzpicture}
\caption{Cubic functions with $b = d = 0$}
\end{figure}
First, we move $f_0$ by $\frac{b}{3a}$ to the right, so
\[f_1(x) = ax^3 + \frac{b^2 (c-1)}{3a} x + \frac{2b^3}{27 a^2} - \frac{bc}{3a} + d \;\;\;\text{ and }\;\;\;P_1 = (x_P + \frac{b}{3a}, y_P)\]
because
\begin{align}
f_1(x) &= a \left (x - \frac{b}{3a} \right )^3 + b \left (x-\frac{b}{3a} \right )^2 + c \left (x-\frac{b}{3a} \right ) + d\\
&= a \left (x^3 - 3 \frac{b}{3a}x^2 + 3 (\frac{b}{3a})^2 x - \frac{b^3}{27a^3} \right )
+b \left (x^2 - \frac{2b}{3a} x + \frac{b^2}{9a^2} \right )
+c x - \frac{bc}{3a} + d\\
&= ax^3 - bx^2 + \frac{b^2}{3a}x - \frac{b^3}{27 a^2}\\
& \;\;\;\;\;\;+ bx^2 - \frac{2b^2}{3a}x + \frac{b^3}{9a^2}\\
& \;\;\;\;\;\;\;\;\;\;\;\; + c x - \frac{bc}{3a} + d\\
&= ax^3 + \frac{b^2}{3a}\left (1-2+c \right )x + \frac{b^3}{9a^2} \left (1-\frac{1}{3} \right )- \frac{bc}{3a} + d
\end{align}
\todo[inline]{Which way to move might be clever?}
\subsection{Number of points with minimal distance}
As there is an algebraic equation of degree 5, there cannot be more
than 5 solutions.
\todo[inline]{Can there be 3, 4 or even 5 solutions? Examples!
2013-11-22 21:40:15 +01:00
After looking at function graphs of cubic functions, I'm pretty
sure that there cannot be 4 or 5 solutions, no matter how you
chose the cubic function $f$ and $P$.
2013-11-22 21:40:15 +01:00
I'm also pretty sure that there is no polynomial (no matter what degree)
that has more than 3 solutions.}
2013-11-23 01:26:03 +01:00
2013-12-11 18:14:12 +01:00
\section{Newtons method}
\todo[inline]{When does Newtons method converge? How fast?
How to choose starting point?}
\section{Quadratic minimization}
\todo[inline]{TODO}
\section{Conclusion}
\todo[inline]{TODO}
2013-11-05 20:30:34 +01:00
\end{document}