2
0
Fork 0
mirror of https://github.com/MartinThoma/LaTeX-examples.git synced 2025-04-25 14:28:05 +02:00
LaTeX-examples/documents/math-minimal-distance-to-cubic-function/linear-functions.tex

121 lines
5 KiB
TeX
Raw Normal View History

2013-12-12 16:22:13 +01:00
\chapter{Linear function}
\section{Defined on $\mdr$}
Let $f(x) = m \cdot x + t$ with $m \in \mdr \setminus \Set{0}$ and
$t \in \mdr$ be a linear function.
\begin{figure}[htp]
\centering
\begin{tikzpicture}
\begin{axis}[
legend pos=north east,
legend cell align=left,
2013-12-12 16:22:13 +01:00
axis x line=middle,
axis y line=middle,
grid = major,
width=0.8\linewidth,
height=8cm,
grid style={dashed, gray!30},
xmin= 0, % start the diagram at this x-coordinate
xmax= 5, % end the diagram at this x-coordinate
ymin= 0, % start the diagram at this y-coordinate
ymax= 3, % end the diagram at this y-coordinate
axis background/.style={fill=white},
xlabel=$x$,
ylabel=$y$,
tick align=outside,
minor tick num=-3,
enlargelimits=true,
tension=0.08]
\addplot[domain=-5:5, thick,samples=50, red] {0.5*x};
\addplot[domain=-5:5, thick,samples=50, blue, dashed] {-2*x+6};
2013-12-12 16:22:13 +01:00
\addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)};
\addplot[blue, nodes near coords=$f_\bot$,every node near coord/.style={anchor=225}] coordinates {(1.5, 3)};
\addplot[red, nodes near coords=$f$,every node near coord/.style={anchor=225}] coordinates {(0.9, 0.5)};
2013-12-12 16:22:13 +01:00
\addlegendentry{$f(x)=\frac{1}{2}x$}
\addlegendentry{$f_\bot(x)=-2x+6$}
2013-12-12 16:22:13 +01:00
\end{axis}
\end{tikzpicture}
\caption{The shortest distance of $P$ to $f$ can be calculated by using the perpendicular}
\label{fig:linear-min-distance}
\end{figure}
Now you can drop a perpendicular $f_\bot$ through $P$ on $f(x)$. The
slope of $f_\bot$ is $- \frac{1}{m}$ and $t_\bot$ can be calculated:\nobreak
\begin{align}
f_\bot(x) &= - \frac{1}{m} \cdot x + t_\bot\\
\Rightarrow y_P &= - \frac{1}{m} \cdot x_P + t_\bot\\
\Leftrightarrow t_\bot &= y_P + \frac{1}{m} \cdot x_P
\end{align}
The point $(x, f(x))$ where the perpendicular $f_\bot$ crosses $f$
is calculated this way:
\begin{align}
f(x) &= f_\bot(x)\\
\Leftrightarrow m \cdot x + t &= - \frac{1}{m} \cdot x + \left(y_P + \frac{1}{m} \cdot x_P \right)\\
\Leftrightarrow \left (m + \frac{1}{m} \right ) \cdot x &= y_P + \frac{1}{m} \cdot x_P - t\\
\Leftrightarrow x &= \frac{m}{m^2+1} \left ( y_P + \frac{1}{m} \cdot x_P - t \right )\label{eq:solution-of-the-linear-problem}
2013-12-12 16:22:13 +01:00
\end{align}
There is only one point with minimal distance. I'll call the result
from line~\ref{eq:solution-of-the-linear-problem} \enquote{solution of
the linear problem} and the function that gives this solution
$S_1(f,P)$.
2013-12-12 16:22:13 +01:00
See Figure~\ref{fig:linear-min-distance}
to get intuition about the geometry used.
\clearpage
\section{Defined on a closed interval $[a,b] \subseteq \mdr$}
Let $f:[a,b] \rightarrow \mdr$, $f(x) := m\cdot x + t$ with $a,b,m,t \in \mdr$ and
$a \leq b$, $m \neq 0$ be a linear function.
\begin{figure}[htp]
\centering
\begin{tikzpicture}
\begin{axis}[
legend pos=north east,
legend cell align=left,
axis x line=middle,
axis y line=middle,
grid = major,
width=0.8\linewidth,
height=8cm,
grid style={dashed, gray!30},
xmin= 0, % start the diagram at this x-coordinate
xmax= 5, % end the diagram at this x-coordinate
ymin= 0, % start the diagram at this y-coordinate
ymax= 3, % end the diagram at this y-coordinate
axis background/.style={fill=white},
xlabel=$x$,
ylabel=$y$,
tick align=outside,
minor tick num=-3,
enlargelimits=true,
tension=0.08]
\addplot[domain= 2:3, thick,samples=50, red] {0.5*x};
\addplot[domain=-5:5, thick,samples=50, blue, dashed] {-2*x+6};
\addplot[domain=1:1.5, thick, samples=50, orange] {3*x-3};
\addplot[domain=4:5, thick, samples=50, green] {-x+5};
\addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)};
\draw[thick, dashed] (axis cs:2,2) -- (axis cs:1.5,1.5);
\draw[thick, dashed] (axis cs:2,2) -- (axis cs:4,1);
\addlegendentry{$f(x)=\frac{1}{2}x, D = [2,3]$}
\addlegendentry{$f_\bot(x)=-2x+6, D=[-5,5]$}
\addlegendentry{$h(x)=3x-3, D=[1,1.5]$}
\addlegendentry{$h(x)=-x+5, D=[4,5]$}
\end{axis}
\end{tikzpicture}
\caption{Different situations when you have linear functions which
are defined on a closed intervall}
\label{fig:linear-min-distance-closed-intervall}
\end{figure}
The point with minimum distance can be found by:
2013-12-16 10:51:15 +01:00
\[\underset{x\in[a,b]}{\arg \min d_{P,f}(x)} = \begin{cases}
S_1(f, P) &\text{if } S_1(f, P) \cap [a,b] \neq \emptyset\\
\Set{a} &\text{if } S_1(f, P) \ni x < a\\
\Set{b} &\text{if } S_1(f, P) \ni x > b
\end{cases}\]
2013-12-16 10:51:15 +01:00
\todo[inline]{argument? proof?}